Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 93-103.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Motivated by Dotson's example we consider a certain class of mappings which includes the classes of mappings studied by Zamfirescu, Ćirić, Berinde and others. We prove several new results about convergence of distinct iterative processes in convex metric spaces. Furthermore, we study the stability for this class of mappings in the setting of metric spaces.
DOI : 10.22436/jnsa.005.02.03
Classification : 47H09, 47H10, 54E50, 54H25
Keywords: Convex metric spaces, Contractive conditions, quasinonexpansive maps, Convergence, Iterative processes, almost T-stability.

Ariza-Ruiz, David 1

1 Department of Mathematical Analysis, University of Seville, Apdo,1160, 41080-Seville, Spain
@article{JNSA_2012_5_2_a2,
     author = {Ariza-Ruiz, David},
     title = {Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {93-103},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     doi = {10.22436/jnsa.005.02.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.03/}
}
TY  - JOUR
AU  - Ariza-Ruiz, David
TI  - Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 93
EP  - 103
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.03/
DO  - 10.22436/jnsa.005.02.03
LA  - en
ID  - JNSA_2012_5_2_a2
ER  - 
%0 Journal Article
%A Ariza-Ruiz, David
%T Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings
%J Journal of nonlinear sciences and its applications
%D 2012
%P 93-103
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.03/
%R 10.22436/jnsa.005.02.03
%G en
%F JNSA_2012_5_2_a2
Ariza-Ruiz, David. Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 93-103. doi : 10.22436/jnsa.005.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.03/

[1] Ariza-Ruiz, D.; Jiménez-Melado, A.; López-Acedo, Genaro A fixed point theorem for weakly Zamfirescu mappings, Nonlinear Analysis , Volume 74 (2011), pp. 1628-1640

[2] Berinde, V. Approximation fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum, Volume 9 (2004), pp. 43-53

[3] Berinde, V. Iterative approximation of fixed points, Springer-Verlag, , 2007

[4] Bosede, A. O.; Rhoades, B. E. Stability of Picard and Mann iteration for a general class of functions, J. Adv. Math. Studies , Volume 3 (2010), pp. 23-25

[5] Chatterjea, S. K. Fixed-point theorems, C. R. Acad. Bulgare Sci. , Volume 25 (1972), pp. 727-730

[6] Ćirić, Lj. B. Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd) (N.S.) , Volume 12(26) (1971), pp. 19-26

[7] Ćirić, Lj. B. A generalization of Banach's contraction principle , Proc. Am. Math. Soc. , Volume 45 (1974), pp. 267-273

[8] Ćirić, Lj. B. A remark on Rhoades fixed point theorem for non-self mappings, Int. J. Math. Math. Sci. , Volume 16 (1993), pp. 397-400

[9] Ćirić, Lj. B. Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts , Volume 23 (1998), pp. 25-31

[10] Ćirić, Lj. B. Contractive-type non-self mappings on metric spaces of hyperbolic type, J. Math. Anal. Appl. , Volume 317 (2006), pp. 28-42

[11] Ćirić, Lj. B. Non-self mappings satisfying non-linear contractive condition with applications, Nonlinear Analysis , Volume 71 (2009), pp. 2927-2935

[12] Ćirić, Lj. B.; Cakić, N. On Common fixed point theorems for non-self hybrid mappings in convex metric spaces, Appl. Math. Comput. , Volume 208 (2009), pp. 90-97

[13] Ćirić, Lj. B.; Ume, J. S. Multi-valued non-self mappings on convex metric spaces, Nonlinear Anal. , Volume 60 (2005), pp. 1053-1063

[14] Collaço, P.; Silva, J. C. E. A complete comparison of 25 contraction conditions, Nonlinear Anal. TMA , Volume 30 (1997), pp. 471-476

[15] Diaz, J. B.; Metcalf, F. T. On the structure of the set of subsequential limit points of successive approximations, Bull. Amer. Math. Soc. , Volume 73 (1967), pp. 516-519

[16] Diaz, J. B.; Metcalf, F. T. On the set of subsequential limit points of successive approximations, Trans. Amer. Math. Soc., Volume 135 (1969), pp. 459-485

[17] Dotson, W. G. Jr. On the Mann iterative process, Trans. Amer. Math. Soc., Volume 149 (1970), pp. 65-73

[18] Goebel, K.; Kirk, W. A. Iteration processes for nonexpansive mappings, in Topological Methods in Nonlinear Functional Analysis (S.P. Singh and S. Thomier, eds.), Contemporary Mathematics 21, Amer. Math. Soc. Providence (1983), pp. 115-123

[19] Harder, A. M. Fixed point theory and stability resuts for fixed points iteration procedures, PhD Thesis University of Missouri-Rolla , , 1987

[20] Harder, A. M.; Hicks, T. L. A stable iteration procedure for nonexpansive mappings, Math. Japon., Volume 33 (1988), pp. 687-692

[21] Harder, A. M.; Hicks, T. L. Stability results for fixed point iteration procedures, Math. Japon. , Volume 33 (1988), pp. 693-706

[22] Imoru, C. O.; Olatinwo, M. O. On the stability of Picard and Mann iteration processes, Carpathian J. Math. , Volume 19 (2003), pp. 155-160

[23] Ishikawa, S. Fixed point and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. , Volume 44 (1976), pp. 147-150

[24] D. S. Jaggi Some unique fixed point theorems, Indian Journal of Pure and Applied Mathematics , Volume 8 (1977), pp. 223-230

[25] Kannan, R. Some results on fixed points, Bull. Calcutta Math. Soc. , Volume 60 (1968), pp. 71-76

[26] Krasnosel'skij Two remarks on the method of successive approximations (Russian), Uspehi Mat. Nauk , Volume 10 (1955), pp. 123-127

[27] Leuştean, L. Proof mining in fixed point theory and ergodic theory, Oberwolfach Prepints OWP 2009-05, Mathematisches Forschungsinstitut Oberwolfach, Germany (2009), pp. 1-71

[28] W. R. Mann Mean value methods in iteration, Proceedings of American Mathematical Society , Volume 4 (1953), pp. 506-510

[29] Olatinwo, M. O. Some stability results for nonexpansive and quasi-nonexpansive operators in uniformly convex Banach spaces usign the Ishikawa iteration process, Carpathian J. Math. , Volume 24 (2008), pp. 82-87

[30] Olatinwo, M. O. Some stability results for two hybrid fixed point iterative algorithms of Kir-Ishikawa and Kirk-Mann type, J. Adv. Math. Studies , Volume 1 (2008), pp. 87-96

[31] Olatinwo, M. O. Convergence and stability results for some iterative schemes, Acta Universitatis Apulensis , Volume 26 (2011), pp. 225-236

[32] Osilike, M. O. Stability results for fixed point iteration procedures, J. Nigerian Math. Soc. , Volume 14/15 (1995/96), pp. 17-28

[33] Osilike, M. O. Stability of the Mann and Ishikawa iteration procedures for \(\phi\)-strong pseudocontractions an nonlinear equation of the \(\phi\)-strongly accretive type, J. Math. Anal. Appl. , Volume 227 (1998), pp. 319-334

[34] Rafiq, A. Fixed points of Ćirić quasi-contractive operators in normed spaces, Mathematical Communications , Volume 11 (2006), pp. 115-120

[35] Reich, S.; Safrir, I. Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. , Volume 15 (1990), pp. 537-558

[36] Rezapour, Sh.; Haghi, R. H.; Rhoades, B. E. Some results about T-stability and almost T-stability, Fixed Point Theory , Volume 12 (2011), pp. 179-186

[37] Rhoades, B. E. A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. , Volume 226 (1977), pp. 257-290

[38] Rhoades, B. E. A biased discussion of fixed point theory, Carpathian J. Math. , Volume 23 (2007), pp. 11-26

[39] Takahashi, W. A convexity in metric space and nonexpansive mapping I, Kodai Math. Sem. Rep. , Volume 22 (1970), pp. 142-149

[40] Tricomi, F. Una teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile reale, Giorn. Mat. Bataglini , Volume 54 (1916), pp. 1-9

[41] T. Zamfirescu Fixed point theorems in metric spaces, Arch. Math. , Volume 1972 (23), pp. 292-298

Cité par Sources :