Voir la notice de l'article provenant de la source International Scientific Research Publications
Ariza-Ruiz, David 1
@article{JNSA_2012_5_2_a2, author = {Ariza-Ruiz, David}, title = {Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {93-103}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2012}, doi = {10.22436/jnsa.005.02.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.03/} }
TY - JOUR AU - Ariza-Ruiz, David TI - Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 93 EP - 103 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.03/ DO - 10.22436/jnsa.005.02.03 LA - en ID - JNSA_2012_5_2_a2 ER -
%0 Journal Article %A Ariza-Ruiz, David %T Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings %J Journal of nonlinear sciences and its applications %D 2012 %P 93-103 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.03/ %R 10.22436/jnsa.005.02.03 %G en %F JNSA_2012_5_2_a2
Ariza-Ruiz, David. Convergence and stability of some iterative processes for a class of quasinonexpansive type mappings. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 93-103. doi : 10.22436/jnsa.005.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.03/
[1] A fixed point theorem for weakly Zamfirescu mappings, Nonlinear Analysis , Volume 74 (2011), pp. 1628-1640
[2] Approximation fixed points of weak contractions using the Picard iteration, Nonlinear Analysis Forum, Volume 9 (2004), pp. 43-53
[3] Iterative approximation of fixed points, Springer-Verlag, , 2007
[4] Stability of Picard and Mann iteration for a general class of functions, J. Adv. Math. Studies , Volume 3 (2010), pp. 23-25
[5] Fixed-point theorems, C. R. Acad. Bulgare Sci. , Volume 25 (1972), pp. 727-730
[6] Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd) (N.S.) , Volume 12(26) (1971), pp. 19-26
[7] A generalization of Banach's contraction principle , Proc. Am. Math. Soc. , Volume 45 (1974), pp. 267-273
[8] A remark on Rhoades fixed point theorem for non-self mappings, Int. J. Math. Math. Sci. , Volume 16 (1993), pp. 397-400
[9] Quasi-contraction non-self mappings on Banach spaces, Bull. Acad. Serbe Sci. Arts , Volume 23 (1998), pp. 25-31
[10] Contractive-type non-self mappings on metric spaces of hyperbolic type, J. Math. Anal. Appl. , Volume 317 (2006), pp. 28-42
[11] Non-self mappings satisfying non-linear contractive condition with applications, Nonlinear Analysis , Volume 71 (2009), pp. 2927-2935
[12] On Common fixed point theorems for non-self hybrid mappings in convex metric spaces, Appl. Math. Comput. , Volume 208 (2009), pp. 90-97
[13] Multi-valued non-self mappings on convex metric spaces, Nonlinear Anal. , Volume 60 (2005), pp. 1053-1063
[14] A complete comparison of 25 contraction conditions, Nonlinear Anal. TMA , Volume 30 (1997), pp. 471-476
[15] On the structure of the set of subsequential limit points of successive approximations, Bull. Amer. Math. Soc. , Volume 73 (1967), pp. 516-519
[16] On the set of subsequential limit points of successive approximations, Trans. Amer. Math. Soc., Volume 135 (1969), pp. 459-485
[17] On the Mann iterative process, Trans. Amer. Math. Soc., Volume 149 (1970), pp. 65-73
[18] Iteration processes for nonexpansive mappings, in Topological Methods in Nonlinear Functional Analysis (S.P. Singh and S. Thomier, eds.), Contemporary Mathematics 21, Amer. Math. Soc. Providence (1983), pp. 115-123
[19] Fixed point theory and stability resuts for fixed points iteration procedures, PhD Thesis University of Missouri-Rolla , , 1987
[20] A stable iteration procedure for nonexpansive mappings, Math. Japon., Volume 33 (1988), pp. 687-692
[21] Stability results for fixed point iteration procedures, Math. Japon. , Volume 33 (1988), pp. 693-706
[22] On the stability of Picard and Mann iteration processes, Carpathian J. Math. , Volume 19 (2003), pp. 155-160
[23] Fixed point and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. , Volume 44 (1976), pp. 147-150
[24] Some unique fixed point theorems, Indian Journal of Pure and Applied Mathematics , Volume 8 (1977), pp. 223-230
[25] Some results on fixed points, Bull. Calcutta Math. Soc. , Volume 60 (1968), pp. 71-76
[26] Two remarks on the method of successive approximations (Russian), Uspehi Mat. Nauk , Volume 10 (1955), pp. 123-127
[27] Proof mining in fixed point theory and ergodic theory, Oberwolfach Prepints OWP 2009-05, Mathematisches Forschungsinstitut Oberwolfach, Germany (2009), pp. 1-71
[28] Mean value methods in iteration, Proceedings of American Mathematical Society , Volume 4 (1953), pp. 506-510
[29] Some stability results for nonexpansive and quasi-nonexpansive operators in uniformly convex Banach spaces usign the Ishikawa iteration process, Carpathian J. Math. , Volume 24 (2008), pp. 82-87
[30] Some stability results for two hybrid fixed point iterative algorithms of Kir-Ishikawa and Kirk-Mann type, J. Adv. Math. Studies , Volume 1 (2008), pp. 87-96
[31] Convergence and stability results for some iterative schemes, Acta Universitatis Apulensis , Volume 26 (2011), pp. 225-236
[32] Stability results for fixed point iteration procedures, J. Nigerian Math. Soc. , Volume 14/15 (1995/96), pp. 17-28
[33] Stability of the Mann and Ishikawa iteration procedures for \(\phi\)-strong pseudocontractions an nonlinear equation of the \(\phi\)-strongly accretive type, J. Math. Anal. Appl. , Volume 227 (1998), pp. 319-334
[34] Fixed points of Ćirić quasi-contractive operators in normed spaces, Mathematical Communications , Volume 11 (2006), pp. 115-120
[35] Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. , Volume 15 (1990), pp. 537-558
[36] Some results about T-stability and almost T-stability, Fixed Point Theory , Volume 12 (2011), pp. 179-186
[37] A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. , Volume 226 (1977), pp. 257-290
[38] A biased discussion of fixed point theory, Carpathian J. Math. , Volume 23 (2007), pp. 11-26
[39] A convexity in metric space and nonexpansive mapping I, Kodai Math. Sem. Rep. , Volume 22 (1970), pp. 142-149
[40] Una teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile reale, Giorn. Mat. Bataglini , Volume 54 (1916), pp. 1-9
[41] Fixed point theorems in metric spaces, Arch. Math. , Volume 1972 (23), pp. 292-298
Cité par Sources :