Voir la notice de l'article provenant de la source International Scientific Research Publications
Saha, Mantu 1 ; Dey, Debashis 2
@article{JNSA_2012_5_2_a1, author = {Saha, Mantu and Dey, Debashis}, title = {Fixed point theorems for {A-contraction} mappings of integral type}, journal = {Journal of nonlinear sciences and its applications}, pages = {84-92}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2012}, doi = {10.22436/jnsa.005.02.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.02/} }
TY - JOUR AU - Saha, Mantu AU - Dey, Debashis TI - Fixed point theorems for A-contraction mappings of integral type JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 84 EP - 92 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.02/ DO - 10.22436/jnsa.005.02.02 LA - en ID - JNSA_2012_5_2_a1 ER -
%0 Journal Article %A Saha, Mantu %A Dey, Debashis %T Fixed point theorems for A-contraction mappings of integral type %J Journal of nonlinear sciences and its applications %D 2012 %P 84-92 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.02/ %R 10.22436/jnsa.005.02.02 %G en %F JNSA_2012_5_2_a1
Saha, Mantu; Dey, Debashis. Fixed point theorems for A-contraction mappings of integral type. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 84-92. doi : 10.22436/jnsa.005.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.02/
[1] Some fixed point theorems in complete metric spaces, Math. Japonica , Volume 36 (2) (1991), pp. 239-243
[2] A general class of contractions: A- contractions, Novi Sad J. Math., Volume 38(1) (2008), pp. 25-33
[3] Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., Volume 3 (1922), pp. 133-181
[4] Su un problema di S. Reich riguardante la teori dei punti fissi, Boll. Un. Math. Ital. , Volume 5 (1972), pp. 103-108
[5] A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci, Volume 2002 (29), pp. 531-536
[6] Metric Spaces: Iteration and Application, Cambridge Univ. Press, Cambridge, 1985
[7] Fixed point theorems for mappings under general contractive condition of integral type, Bull. Math. Anal. Appl. , Volume 3 (1) (2011), pp. 27-34
[8] Topics in metric fixed point theory, Cambridge University Press, Newyork, 1990
[9] Some results on fixed points, Bull. Calcutta Math. Soc. , Volume 60 (1968), pp. 71-76
[10] Kannan's fixed point theorem, Boll. Un. Math. Ital. , Volume 4 (1971), pp. 1-11
[11] Two fixed point theorems for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, Volume 63 (2003), pp. 4007-4013
[12] A comparison of various definitions of contractive type mappings, Trans. Amer. Math. Soc., Volume 226 (1977), pp. 257-290
[13] Contractive definitions revisited , Topological methods in nonlinear functional analysis, (Toronto, Ont., 1982), Contemp. Math., Vol. 21, American Mathematical Society, Rhoade Island (1983), pp. 189-203
[14] Contractive definitions, Nonlinear Analysis, World Science Publishing, Singapore (1987), pp. 513-526
[15] Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York, 1976
[16] Invitation to Dynamical Systems, Prentice-Hall, Upper Saddle River, NJ, 1995
[17] Fixed Point Theorems, Cambridge University Press, London, 1974
Cité par Sources :