Fixed point theorems for A-contraction mappings of integral type
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 84-92.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the present paper, we prove analogues of some fixed point results for A-contraction type mappings in integral setting.
DOI : 10.22436/jnsa.005.02.02
Classification : 54H25, 47H10
Keywords: fixed point, general contractive condition, integral type.

Saha, Mantu 1 ; Dey, Debashis 2

1 Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India
2 Koshigram Union Institution, Koshigram-713150, Burdwan, West Bengal, India
@article{JNSA_2012_5_2_a1,
     author = {Saha, Mantu and Dey, Debashis},
     title = {Fixed point theorems for {A-contraction}  mappings  of integral type},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {84-92},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     doi = {10.22436/jnsa.005.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.02/}
}
TY  - JOUR
AU  - Saha, Mantu
AU  - Dey, Debashis
TI  - Fixed point theorems for A-contraction  mappings  of integral type
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 84
EP  - 92
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.02/
DO  - 10.22436/jnsa.005.02.02
LA  - en
ID  - JNSA_2012_5_2_a1
ER  - 
%0 Journal Article
%A Saha, Mantu
%A Dey, Debashis
%T Fixed point theorems for A-contraction  mappings  of integral type
%J Journal of nonlinear sciences and its applications
%D 2012
%P 84-92
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.02/
%R 10.22436/jnsa.005.02.02
%G en
%F JNSA_2012_5_2_a1
Saha, Mantu; Dey, Debashis. Fixed point theorems for A-contraction  mappings  of integral type. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 84-92. doi : 10.22436/jnsa.005.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.02/

[1] Ahmad, B.; Rehman, F. U. Some fixed point theorems in complete metric spaces, Math. Japonica , Volume 36 (2) (1991), pp. 239-243

[2] Akram, M.; Zafar, A. A.; A. A. Siddiqui A general class of contractions: A- contractions, Novi Sad J. Math., Volume 38(1) (2008), pp. 25-33

[3] Banach, S. Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., Volume 3 (1922), pp. 133-181

[4] R. Bianchini Su un problema di S. Reich riguardante la teori dei punti fissi, Boll. Un. Math. Ital. , Volume 5 (1972), pp. 103-108

[5] Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci, Volume 2002 (29), pp. 531-536

[6] Bryant, V. Metric Spaces: Iteration and Application, Cambridge Univ. Press, Cambridge, 1985

[7] Dey, D.; Ganguly, A.; Saha, M. Fixed point theorems for mappings under general contractive condition of integral type, Bull. Math. Anal. Appl. , Volume 3 (1) (2011), pp. 27-34

[8] Goebel, K.; Kirk, W. A. Topics in metric fixed point theory, Cambridge University Press, Newyork, 1990

[9] Kannan, R. Some results on fixed points, Bull. Calcutta Math. Soc. , Volume 60 (1968), pp. 71-76

[10] Reich, S. Kannan's fixed point theorem, Boll. Un. Math. Ital. , Volume 4 (1971), pp. 1-11

[11] Rhoades, B. E. Two fixed point theorems for mappings satisfying a general contractive condition of integral type, International Journal of Mathematics and Mathematical Sciences, Volume 63 (2003), pp. 4007-4013

[12] Rhoades, B. E. A comparison of various definitions of contractive type mappings, Trans. Amer. Math. Soc., Volume 226 (1977), pp. 257-290

[13] Rhoades, B. E. Contractive definitions revisited , Topological methods in nonlinear functional analysis, (Toronto, Ont., 1982), Contemp. Math., Vol. 21, American Mathematical Society, Rhoade Island (1983), pp. 189-203

[14] B. E. Rhoades Contractive definitions, Nonlinear Analysis, World Science Publishing, Singapore (1987), pp. 513-526

[15] Rudin, W. Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, New York, 1976

[16] Scheinerman, E. Invitation to Dynamical Systems, Prentice-Hall, Upper Saddle River, NJ, 1995

[17] O. R. Smart Fixed Point Theorems, Cambridge University Press, London, 1974

Cité par Sources :