Voir la notice de l'article provenant de la source International Scientific Research Publications
Karapınar, Erdal 1
@article{JNSA_2012_5_2_a0, author = {Karap{\i}nar, Erdal}, title = {\'Ciri\'c types nonunique fixed point theorems on partial metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {74-83}, publisher = {mathdoc}, volume = {5}, number = {2}, year = {2012}, doi = {10.22436/jnsa.005.02.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.01/} }
TY - JOUR AU - Karapınar, Erdal TI - Ćirić types nonunique fixed point theorems on partial metric spaces JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 74 EP - 83 VL - 5 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.01/ DO - 10.22436/jnsa.005.02.01 LA - en ID - JNSA_2012_5_2_a0 ER -
%0 Journal Article %A Karapınar, Erdal %T Ćirić types nonunique fixed point theorems on partial metric spaces %J Journal of nonlinear sciences and its applications %D 2012 %P 74-83 %V 5 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.01/ %R 10.22436/jnsa.005.02.01 %G en %F JNSA_2012_5_2_a0
Karapınar, Erdal. Ćirić types nonunique fixed point theorems on partial metric spaces. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 74-83. doi : 10.22436/jnsa.005.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.01/
[1] A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., Volume 63 (2012), pp. 716-719
[2] Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1894-1899
[3] On Ćirić's non-unique fixed points, Mat. Vesnik, Volume 13 (1976), pp. 255-257
[4] Results on non-unique fixed points, Publications de L'Institut Mathématique , Volume 26 (1978), pp. 5-9
[5] Generalized contractions on partial metric spaces, Topology and its Applications, Volume 157 (2010), pp. 2778-2785
[6] Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory and Applications, Article ID 508730 , Volume 2011 (2011), pp. 1-10
[7] Coupled fixed point results for ( \(\psi-\phi\))-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. , Volume 62 (2011), pp. 4449-4460
[8] Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., Volume 3 (1922), pp. 133-181
[9] Fixed point theorems for mapping satisfying inwardness conditions, Trans. Amer. Math. Soc., Volume 215 (1976), pp. 241-251
[10] A generalized contraction principle in partial metric spaces, Math. Comput. Modelling, Volume 55 (2012), pp. 1673-1681
[11] On some maps with a nonunique fixed point, Publications de L'Institut Mathématique , Volume 17 (1974), pp. 52-58
[12]
[13] Non-unique fixed point theorems of Ćirić type, (Hindi) Vijnana Parishad Anusandhan Patrika , Volume 41 (1998), pp. 217-231
[14] Fixed point theorems for quasi-metric spaces, Math. Japonica, Volume 33 (1988), pp. 231-236
[15] Some new extensions of Banach's contraction principle to partial metric space, Appl. Math. Lett., Volume 24 (2011), pp. 1326-1330
[16] On cone metric spaces: A survey, Nonlinear Anal., Volume 74 (2011), pp. 2591-2601
[17] Fixed point theorems for operators on partial http://www.isr-publications.com/admin/jnsa/articles/1626/editmetric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1900-1904
[18] Fixed Point Theorems in Cone Banach Spaces, Fixed Point Theory Appl., Article ID 609281, doi:10.1155/2009/609281., Volume 2009 (2009), pp. 1-9
[19] Generalizations of Caristi Kirk's Theorem on Partial Metric Spaces, Fixed Point Theory Appl., , 2011
[20] Some Fixed Point Theorems on the class of comparable partial metric spaces on comparable partial metric spaces, Appl. Gen. Topol., Volume 12 (2011), pp. 187-192
[21] Weak \(\phi\)-contraction on partial metric spaces, J. Comput. Anal. Appl., Volume 14 (2012), pp. 206-210
[22] A new non-unique fixed point theorem, J. Appl. Funct. Anal., Volume 7 (2012), pp. 92-97
[23] What do partial metrics represent?, Spatial representation: discrete vs. continuous computational models, Dagstuhl Seminar Proceedings, No. 04351, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005
[24] Fuzzy metric and statistical metric spaces, Kybernetika, Volume 11 (1975), pp. 326-334
[25] Partial quasi-metrics, Theoret. Comput. Sci., Volume 365 (2006), pp. 237-246
[26] On Ćirić type mappings with a nonunique coincidence points, Mathematica (Cluj) , Volume 35 (1993), pp. 221-225
[27] On Ćirić type mappings with nonunique fixed and periodic points, Int. J. Pure Appl. Math., Volume 26 (2006), pp. 399-408
[28] Partial metric topology, Research Report 212, Dept. of Computer Science, University of Warwick, 1992
[29] Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Annals of the New York Academi of Sciences, Volume 728 (1994), pp. 183-197
[30] Statistical metrics, Proc. Nat. Acad. Sci. USA, Volume 28 (1942), pp. 535-537
[31] Two topologies are better than one, Tech. report, University of Warwick, Coventry, UK, 1995
[32] Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste., Volume 36 (2004), pp. 17-26
[33] On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., Volume 6 (2005), pp. 229-240
[34] On Ćirić type maps with a nonunique fixed point, Indian J. Pure Appl. Math., Volume 10 (1979), pp. 1039-1043
[35] Weightable quasi-metric semigroup and semilattices, Electronic Notes of Theoretical computer science, Proceedings of MFCSIT, 40 , Elsevier, 2003
[36] A characterization of partial metrizability: domains are quantifiable, Topology in computer science (Schlo Dagstuhl, 2000), Theoret. Comput. Sci., Volume 305 (2003), pp. 409-432
[37] On Ćirić type mappings with a nonunique coincidence points , Fixed Point Theory Appl., Volume 6 (2007), pp. 187-190
Cité par Sources :