Ćirić types nonunique fixed point theorems on partial metric spaces
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 74-83.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Given a certain type of operator on a partial metric space, new Ćirić types, non-unique fixed point theorems, generalizing the related work of Ćirić [On some maps with a non-unique fixed point,Publications de L'Institut Mathématique, 17 (1974), 52-58], are proved.
DOI : 10.22436/jnsa.005.02.01
Classification : 46T99, 54H25, 47H10, 54E50
Keywords: Partial metric spaces, Fixed point theorem, Orbital continuity

Karapınar, Erdal 1

1 Department of Mathematics, Atilim University 06836, Incek, Ankara, Turkey
@article{JNSA_2012_5_2_a0,
     author = {Karap{\i}nar, Erdal},
     title = {\'Ciri\'c types nonunique fixed point theorems on partial metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {74-83},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2012},
     doi = {10.22436/jnsa.005.02.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.01/}
}
TY  - JOUR
AU  - Karapınar, Erdal
TI  - Ćirić types nonunique fixed point theorems on partial metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 74
EP  - 83
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.01/
DO  - 10.22436/jnsa.005.02.01
LA  - en
ID  - JNSA_2012_5_2_a0
ER  - 
%0 Journal Article
%A Karapınar, Erdal
%T Ćirić types nonunique fixed point theorems on partial metric spaces
%J Journal of nonlinear sciences and its applications
%D 2012
%P 74-83
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.01/
%R 10.22436/jnsa.005.02.01
%G en
%F JNSA_2012_5_2_a0
Karapınar, Erdal. Ćirić types nonunique fixed point theorems on partial metric spaces. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 2, p. 74-83. doi : 10.22436/jnsa.005.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.02.01/

[1] Abdeljawad, T.; Karapınar, E.; Taş, K. A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., Volume 63 (2012), pp. 716-719

[2] Abedelljawad, T.; Karapınar, E.; Taş, K. Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1894-1899

[3] Achari, J. On Ćirić's non-unique fixed points, Mat. Vesnik, Volume 13 (1976), pp. 255-257

[4] Achari, J. Results on non-unique fixed points, Publications de L'Institut Mathématique , Volume 26 (1978), pp. 5-9

[5] Altun, I.; Sola, F.; Şimşek, H. Generalized contractions on partial metric spaces, Topology and its Applications, Volume 157 (2010), pp. 2778-2785

[6] Altun, I.; Erduran, A. Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory and Applications, Article ID 508730 , Volume 2011 (2011), pp. 1-10

[7] Aydi, H.; Karapınar, E.; Shatnawi, W. Coupled fixed point results for ( \(\psi-\phi\))-weakly contractive condition in ordered partial metric spaces, Comput. Math. Appl. , Volume 62 (2011), pp. 4449-4460

[8] Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., Volume 3 (1922), pp. 133-181

[9] Caristi, J. Fixed point theorems for mapping satisfying inwardness conditions, Trans. Amer. Math. Soc., Volume 215 (1976), pp. 241-251

[10] Chi, K. P.; Karapınar, E.; T. D. Thanh A generalized contraction principle in partial metric spaces, Math. Comput. Modelling, Volume 55 (2012), pp. 1673-1681

[11] Ćirić, Lj. B. On some maps with a nonunique fixed point, Publications de L'Institut Mathématique , Volume 17 (1974), pp. 52-58

[12]

[13] Gupta, S.; Ram, B. Non-unique fixed point theorems of Ćirić type, (Hindi) Vijnana Parishad Anusandhan Patrika , Volume 41 (1998), pp. 217-231

[14] Hicks, T. L. Fixed point theorems for quasi-metric spaces, Math. Japonica, Volume 33 (1988), pp. 231-236

[15] Ilić, D; Pavlović, V.; Rakocecić, V. Some new extensions of Banach's contraction principle to partial metric space, Appl. Math. Lett., Volume 24 (2011), pp. 1326-1330

[16] Janković, S.; ; Kadelburg, Z.; Radenović, S. On cone metric spaces: A survey, Nonlinear Anal., Volume 74 (2011), pp. 2591-2601

[17] Karapınar, E.; Erhan, I. M. Fixed point theorems for operators on partial http://www.isr-publications.com/admin/jnsa/articles/1626/editmetric spaces, Appl. Math. Lett., Volume 24 (2011), pp. 1900-1904

[18] Karapınar, E. Fixed Point Theorems in Cone Banach Spaces, Fixed Point Theory Appl., Article ID 609281, doi:10.1155/2009/609281., Volume 2009 (2009), pp. 1-9

[19] Karapınar, E. Generalizations of Caristi Kirk's Theorem on Partial Metric Spaces, Fixed Point Theory Appl., , 2011

[20] Karapınar, E. Some Fixed Point Theorems on the class of comparable partial metric spaces on comparable partial metric spaces, Appl. Gen. Topol., Volume 12 (2011), pp. 187-192

[21] Karapınar, E. Weak \(\phi\)-contraction on partial metric spaces, J. Comput. Anal. Appl., Volume 14 (2012), pp. 206-210

[22] Karapınar, E. A new non-unique fixed point theorem, J. Appl. Funct. Anal., Volume 7 (2012), pp. 92-97

[23] Kopperman, R.; Matthews, S. G.; Pajoohesh, H. What do partial metrics represent?, Spatial representation: discrete vs. continuous computational models, Dagstuhl Seminar Proceedings, No. 04351, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2005

[24] Kramosil, O.; Michalek, J. Fuzzy metric and statistical metric spaces, Kybernetika, Volume 11 (1975), pp. 326-334

[25] Künzi, H. P. A.; Pajoohesh, H.; Schellekens, M. P. Partial quasi-metrics, Theoret. Comput. Sci., Volume 365 (2006), pp. 237-246

[26] Z. Q. Liu On Ćirić type mappings with a nonunique coincidence points, Mathematica (Cluj) , Volume 35 (1993), pp. 221-225

[27] Liu, Z.; Guo, Z.; Kang, S. M.; Lee, S. K. On Ćirić type mappings with nonunique fixed and periodic points, Int. J. Pure Appl. Math., Volume 26 (2006), pp. 399-408

[28] Matthews, S. G. Partial metric topology, Research Report 212, Dept. of Computer Science, University of Warwick, 1992

[29] Matthews, S. G. Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Annals of the New York Academi of Sciences, Volume 728 (1994), pp. 183-197

[30] Menger, K. Statistical metrics, Proc. Nat. Acad. Sci. USA, Volume 28 (1942), pp. 535-537

[31] O'Neill, S. J. Two topologies are better than one, Tech. report, University of Warwick, Coventry, UK, 1995

[32] Oltra, S.; Valero, O. Banach's fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste., Volume 36 (2004), pp. 17-26

[33] Valero, O. On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., Volume 6 (2005), pp. 229-240

[34] B. G. Pachpatte On Ćirić type maps with a nonunique fixed point, Indian J. Pure Appl. Math., Volume 10 (1979), pp. 1039-1043

[35] Romaguera, S.; Schellekens, M. Weightable quasi-metric semigroup and semilattices, Electronic Notes of Theoretical computer science, Proceedings of MFCSIT, 40 , Elsevier, 2003

[36] Schellekens, M. P. A characterization of partial metrizability: domains are quantifiable, Topology in computer science (Schlo Dagstuhl, 2000), Theoret. Comput. Sci., Volume 305 (2003), pp. 409-432

[37] Zhang, F.; Kang, S. M.; Xie, L. On Ćirić type mappings with a nonunique coincidence points , Fixed Point Theory Appl., Volume 6 (2007), pp. 187-190

Cité par Sources :