Existence of positive solutions of singular $p$-Laplacian equations in a ball
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 44-55.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate singular $p$-Laplacian equations of the form $\Delta _pu + f(x,\nabla u)u^{-\lambda} = 0$ with zero Dirichlet boundary condition in a ball $B \subset R^N$; where $p > 1, \lambda > 0$, and give a sufficient condition for the equation to have a positive solution, by means of a supersolution and a subsolution.
DOI : 10.22436/jnsa.005.01.06
Classification : 58J10, 35N20
Keywords: Positive solution, singular equation, supersolution and subsolution.

Li, Fang 1 ; Yang, Zuodong 2

1 Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Jiangsu Nanjing 210046, China
2 College of Zhongbei, Nanjing Normal University, Jiangsu Nanjing 210046, China;Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Jiangsu Nanjing 210046, China
@article{JNSA_2012_5_1_a5,
     author = {Li, Fang and Yang, Zuodong},
     title = {Existence of positive solutions of singular {\(p\)-Laplacian} equations in a ball},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {44-55},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2012},
     doi = {10.22436/jnsa.005.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.06/}
}
TY  - JOUR
AU  - Li, Fang
AU  - Yang, Zuodong
TI  - Existence of positive solutions of singular \(p\)-Laplacian equations in a ball
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 44
EP  - 55
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.06/
DO  - 10.22436/jnsa.005.01.06
LA  - en
ID  - JNSA_2012_5_1_a5
ER  - 
%0 Journal Article
%A Li, Fang
%A Yang, Zuodong
%T Existence of positive solutions of singular \(p\)-Laplacian equations in a ball
%J Journal of nonlinear sciences and its applications
%D 2012
%P 44-55
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.06/
%R 10.22436/jnsa.005.01.06
%G en
%F JNSA_2012_5_1_a5
Li, Fang; Yang, Zuodong. Existence of positive solutions of singular \(p\)-Laplacian equations in a ball. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 44-55. doi : 10.22436/jnsa.005.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.06/

[1] Mohammed, Ahmed Positive solutions of the p-Laplace equation with singular nonlinearity, J. Math. Anal. Appl., Volume 352 (2009), pp. 234-245

[2] Astrita, G.; Marrucci, G. Principles of Non-Newtonian Fuid Mechanics, McGraw-Hill, NewYork, 1974

[3] Gidas, B.; Ni, W. M.; Nirenberg, L. Symmetry and related properties via the maximum principal, Comm.Math.Phys. , Volume 68 (1979), pp. 209-243

[4] Arcoya, David; Carmona, Jos; Leonori, Tommaso; Martnez-Aparicio, Pedro J.; Orsina, Luigi; Petitta, Francesco Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations , Volume 246 (2009), pp. 4006-4042

[5] Guo, Zongming Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems, Nonlinear Anal. , Volume 18 (1992), pp. 957-971

[6] Guo, Zongming; Webb, J. R. L. Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh. , Volume 124A (1994), pp. 189-198

[7] Gilbarg, D.; Trudinger, N. S. Elliptic Partial Differential Equations of Second Order, Second ed., Springer Verlag, New York, 1983

[8] Esteban, J. R.; Vazquez, J. L. On the equation of turbulent ltration in one-dimensional porous media, Nonlinear Anal. , Volume 10 (1982), pp. 1303-1325

[9] Gomes, S. M. On a singular nonlinear elliptic problem, SIAM J. Math. Anal. , Volume 17 (6) (1986), pp. 1359-1369

[10] Xua, Yingye; Liana, Luanying; Debnath, Lokenath Existence of positive solutions of singular elliptic boundary value problems in a ball, Computers and Mathematics with Applications, Volume 61 (2011), pp. 1335-1341

[11] Miao, Qing; Yang, Zuodong Bounded positive entire solutions of singular p-Laplacian equations, Nonlinear Analysis , Volume 69 (2008), pp. 3749-3760

[12] Ladyzhenskaya, O. A.; Uraltseva, N. N. Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968

[13] Zhou, Jie; Yang, Zuodong; Zhao, Jianqing Existence of singular positive solutions for a class quasilinear elliptic equations, Applied Mathematics and Computation , Volume 190 (2007), pp. 423-431

[14] Kim, Chan-Gyun Existence of positive solutions for singular boundary value problems involving the one- dimensional p-Laplacian, Nonlinear Analysis , Volume 70 (2009), pp. 4259-4267

[15] Chen, Zu-Chi; Zhou, Yong On a singular quasilinear elliptic boundary value problem in a ball, Nonlinear Analysis , Volume 45 (2001), pp. 909-924

[16] Yang, Zuodong Existence of positive entire solutions for singular and non-singular quasi-linear elliptic equation, Journal of Computational and Applied Mathematics , Volume 197 (2006), pp. 355-364

[17] Lazer, A. C.; Mckenna, P. J. On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. , Volume 111 (1991), pp. 721-730

[18] Kalashnikov, A. S. On a nonlinear equation appearing in the theory of non-stationary filtration, Trudy Sem. Petrovsk. , Volume 5 (1978), pp. 60-68

[19] Keller, H. B.; D. S. Cohen Some positone problems suggested by nonlinear heat generation, J. Math. Mech. , Volume 16 (1967), pp. 1361-1376

[20] Yao, Zheng-an; Zhou, Wenshu Existence of positive solutions for the one-dimensional singular p- Laplacian, Nonlinear Analysis , Volume 68 (2008), pp. 2309-2318

[21] Liu, Cunlian; Yang, Zuodong Existence of large solutions for quasilinear elliptic problems with a gradient term, Applied Mathematics and Computation , Volume 192 (2007), pp. 533-545

[22] Goncalves, CJ. V. A.; Rezende, M. C.; Santos, C. A. Positive solutions for a mixed and singular quasilinear problem, Nonlinear Analysis , Volume 74 (2011), pp. 132-140

[23] Liu, Cunlian; Yang, Zuodong A boundary blow-up for a class of quasilinear elliptic problems with gradient term, J.Appl. Math. Comput. , Volume 33 (2010), pp. 23-34

[24] Zhang, Zhijun Boundary behavior of solutions to some singular elliptic boundary value problems, Nonlinear Analysis , Volume 69 (2008), pp. 2293-2302

[25] Martinson, L. K.; K. B. Pavlov Unsteady shear flows of a conducting fluid with a rheological power law, Magnit. Gidrodinamika , Volume 2 (1971), pp. 50-58

[26] Ladyzhenskaya, O. A.; N. N. Ural'tseva Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968

[27] Tolksdorf, P. On the Dirichlet problem for quasilinear equations in domains with conical boundary point, Comm. Partial Differential Equations, Volume 8(7) (1983), pp. 773-817

Cité par Sources :