Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Fang 1 ; Yang, Zuodong 2
@article{JNSA_2012_5_1_a5, author = {Li, Fang and Yang, Zuodong}, title = {Existence of positive solutions of singular {\(p\)-Laplacian} equations in a ball}, journal = {Journal of nonlinear sciences and its applications}, pages = {44-55}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2012}, doi = {10.22436/jnsa.005.01.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.06/} }
TY - JOUR AU - Li, Fang AU - Yang, Zuodong TI - Existence of positive solutions of singular \(p\)-Laplacian equations in a ball JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 44 EP - 55 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.06/ DO - 10.22436/jnsa.005.01.06 LA - en ID - JNSA_2012_5_1_a5 ER -
%0 Journal Article %A Li, Fang %A Yang, Zuodong %T Existence of positive solutions of singular \(p\)-Laplacian equations in a ball %J Journal of nonlinear sciences and its applications %D 2012 %P 44-55 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.06/ %R 10.22436/jnsa.005.01.06 %G en %F JNSA_2012_5_1_a5
Li, Fang; Yang, Zuodong. Existence of positive solutions of singular \(p\)-Laplacian equations in a ball. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 44-55. doi : 10.22436/jnsa.005.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.06/
[1] Positive solutions of the p-Laplace equation with singular nonlinearity, J. Math. Anal. Appl., Volume 352 (2009), pp. 234-245
[2] Principles of Non-Newtonian Fuid Mechanics, McGraw-Hill, NewYork, 1974
[3] Symmetry and related properties via the maximum principal, Comm.Math.Phys. , Volume 68 (1979), pp. 209-243
[4] Existence and nonexistence of solutions for singular quadratic quasilinear equations, J. Differential Equations , Volume 246 (2009), pp. 4006-4042
[5] Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems, Nonlinear Anal. , Volume 18 (1992), pp. 957-971
[6] Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh. , Volume 124A (1994), pp. 189-198
[7] Elliptic Partial Differential Equations of Second Order, Second ed., Springer Verlag, New York, 1983
[8] On the equation of turbulent ltration in one-dimensional porous media, Nonlinear Anal. , Volume 10 (1982), pp. 1303-1325
[9] On a singular nonlinear elliptic problem, SIAM J. Math. Anal. , Volume 17 (6) (1986), pp. 1359-1369
[10] Existence of positive solutions of singular elliptic boundary value problems in a ball, Computers and Mathematics with Applications, Volume 61 (2011), pp. 1335-1341
[11] Bounded positive entire solutions of singular p-Laplacian equations, Nonlinear Analysis , Volume 69 (2008), pp. 3749-3760
[12] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968
[13] Existence of singular positive solutions for a class quasilinear elliptic equations, Applied Mathematics and Computation , Volume 190 (2007), pp. 423-431
[14] Existence of positive solutions for singular boundary value problems involving the one- dimensional p-Laplacian, Nonlinear Analysis , Volume 70 (2009), pp. 4259-4267
[15] On a singular quasilinear elliptic boundary value problem in a ball, Nonlinear Analysis , Volume 45 (2001), pp. 909-924
[16] Existence of positive entire solutions for singular and non-singular quasi-linear elliptic equation, Journal of Computational and Applied Mathematics , Volume 197 (2006), pp. 355-364
[17] On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. , Volume 111 (1991), pp. 721-730
[18] On a nonlinear equation appearing in the theory of non-stationary filtration, Trudy Sem. Petrovsk. , Volume 5 (1978), pp. 60-68
[19] Some positone problems suggested by nonlinear heat generation, J. Math. Mech. , Volume 16 (1967), pp. 1361-1376
[20] Existence of positive solutions for the one-dimensional singular p- Laplacian, Nonlinear Analysis , Volume 68 (2008), pp. 2309-2318
[21] Existence of large solutions for quasilinear elliptic problems with a gradient term, Applied Mathematics and Computation , Volume 192 (2007), pp. 533-545
[22] Positive solutions for a mixed and singular quasilinear problem, Nonlinear Analysis , Volume 74 (2011), pp. 132-140
[23] A boundary blow-up for a class of quasilinear elliptic problems with gradient term, J.Appl. Math. Comput. , Volume 33 (2010), pp. 23-34
[24] Boundary behavior of solutions to some singular elliptic boundary value problems, Nonlinear Analysis , Volume 69 (2008), pp. 2293-2302
[25] Unsteady shear flows of a conducting fluid with a rheological power law, Magnit. Gidrodinamika , Volume 2 (1971), pp. 50-58
[26] Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968
[27] On the Dirichlet problem for quasilinear equations in domains with conical boundary point, Comm. Partial Differential Equations, Volume 8(7) (1983), pp. 773-817
Cité par Sources :