A generalization of Banachs contraction principle for nonlinear contraction in a partial metric space
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 37-43.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We establish a fixed point theorem for nonlinear contraction in a complete partial metric space. Our result generalizes the Banach type fixed point theorem in a partial metric space in the sense of Matthews.
DOI : 10.22436/jnsa.005.01.05
Classification : 54H25, 47H10
Keywords: Partial metric space, Banach principle, Fixed Point Theory.

Shatanawi, Wasfi 1 ; Nashine, Hemant Kumar 2

1 Department of Mathematics, Hashemite University, Zarqa, Jordan
2 Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar, Vidhansabha-Chandrakhuri Marg, Naradha, Mandir Hasaud, Raipur-492101 (Chhattisgarh), India
@article{JNSA_2012_5_1_a4,
     author = {Shatanawi, Wasfi and Nashine, Hemant Kumar},
     title = {A generalization of {Banachs} contraction principle for nonlinear contraction in a partial metric space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {37-43},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2012},
     doi = {10.22436/jnsa.005.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.05/}
}
TY  - JOUR
AU  - Shatanawi, Wasfi
AU  - Nashine, Hemant Kumar
TI  - A generalization of Banachs contraction principle for nonlinear contraction in a partial metric space
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 37
EP  - 43
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.05/
DO  - 10.22436/jnsa.005.01.05
LA  - en
ID  - JNSA_2012_5_1_a4
ER  - 
%0 Journal Article
%A Shatanawi, Wasfi
%A Nashine, Hemant Kumar
%T A generalization of Banachs contraction principle for nonlinear contraction in a partial metric space
%J Journal of nonlinear sciences and its applications
%D 2012
%P 37-43
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.05/
%R 10.22436/jnsa.005.01.05
%G en
%F JNSA_2012_5_1_a4
Shatanawi, Wasfi; Nashine, Hemant Kumar. A generalization of Banachs contraction principle for nonlinear contraction in a partial metric space. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 37-43. doi : 10.22436/jnsa.005.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.05/

[1] Altun, I.; Erduran, A. Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory, Article ID 508730, Volume 2011 (2011), pp. 1-10

[2] Altun, I.; Simsek, H. Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. , Volume 1 (2008), pp. 1-8

[3] Altun, I.; Sola, F.; Simsek, H. Generalized contractions on partial metric spaces, Topology Appl., Volume 157(18) (2010), pp. 2778-2785

[4] Aydi, H. Some fixed point results in ordered partial metric spaces, accepted in J. Nonlinear Sci. Appl., , 2011

[5] Aydi, H.; Karapinar, E.; Shatanawi, W. Coupled fixed point results for (\(\psi,\phi\))-weakly contractive condition in ordered partial metric spaces, Computer Math. Appl, Volume 62 (2011), pp. 4446-4460

[6] Berinde, V. Some remarks on a fixed point theorem for Ciric-type almost contractions, Carpathian J. Math. , Volume 25 (2009), p. 157-62

[7] Berinde, V. General constructive fixed point theorems for Ciric-type almost contractions in metric spaces, Carpathian J. Math. , Volume 24 (2008), pp. 9-10

[8] Ćirić, Lj B. Generalized contractions and fixed-point theorems, Publ. lInst Math. (Beograd) , Volume 12 (1971), pp. 19-26

[9] Ćirić, Lj B. A generalization of Banachs contraction principle , Proc Amer. Math. Soc. , Volume 45 (1974), p. 267-73

[10] Ćirić, Lj B. On contraction type mappings, Math Balkanica , Volume 1 (1971), pp. 1-527

[11] Ćirić, Lj B. Fixed point theory, Contraction Mapping principle, FME Press, Beograd, 2003

[12] Ćirić, Lj B. Coincidence and fixed points for maps on topological spaces, Topol. Appl. , Volume 154 (2007), pp. 3100-3106

[13] Ćirić, Lj B. Fixed point theorems for multi-valued contractions in complete metric spaces, J. Math. Anal. Appl. , Volume 348 (2008), pp. 499-507

[14] Ćirić, Lj B. Non-self mappings satisfying nonlinear contractive condition with applications, Nonlinear Anal., Volume 71 (2009), pp. 2927-2935

[15] Ćirić, Lj B.; Abbas, M.; Saadati, R.; Hussain, N. Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput. , Volume 227 (12) (2011), pp. 5784-5789

[16] Ćirić, Lj B.; Cakić, N.; Rajovi, M.; Ume, J. S. Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. Article ID 131294, Volume 2008 (2008), pp. 1-11

[17] Ćirić, Lj B.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. , Volume 218 (2011), pp. 2398-2406

[18] R. Heckmann Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures , Volume 7 (1999), pp. 71-83

[19] Ilić, D.; Pavlović, V.; Rakočević, V. Some new extensions of Banach's contraction princible to partial metric space, Appl. Math. Lett. , doi:10.1016/j.aml.2011.02.025 , 2011

[20] Karapınar, E. Weak \(\phi\)-contraction on partial contraction, J. Comput. Anal. Appl. , , in press

[21] Karapınar, E. Generalizations of Caristi Kirk's Theorem on Partial metric Spaces, Fixed Point Theory Appl. (in press)

[22] Matthews, S. G. Partial metric topology, In, General Topology and its Applications, Proc. 8th Summer Conf., Queen's College (1992), Annals of the New York Academy of Sciences, Volume 728 (1994), pp. 183-197

[23] Nashine, H. K. Fixed point results for mappings satisfying ( \(\psi,\varphi\))-weakly contractive condition in ordered partial metric spaces, accepted in Math. , Slovaca , 2011

[24] Valero, O. On Banach fixed point theorems for partial metric spaces, Applied General Topology , Volume 6(2) (2005), pp. 229-240

[25] Oltra, S.; Valero, O. Banach's fixed point theorem for partial metric spaces, Rendiconti dell'Istituto di Matematica dell'Universit di Trieste, Volume 36(1-2) (2004), pp. 17-26

[26] Romaguera, S. A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. Article ID 493298, Volume 2010 (2010), pp. 1-6

[27] Samet, B.; C. Vetro An integral version of Ćirić s fixed point theorem, Mediterr J Math. , doi:10.1007/s00009- 011-0120-1.

[28] Shatanawi, W.; Samet, B.; Abbas, M. Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Mod., doi:10.1016/j.mcm.2011.08.042., 2011

Cité par Sources :