Voir la notice de l'article provenant de la source International Scientific Research Publications
Shatanawi, Wasfi 1 ; Nashine, Hemant Kumar 2
@article{JNSA_2012_5_1_a4, author = {Shatanawi, Wasfi and Nashine, Hemant Kumar}, title = {A generalization of {Banachs} contraction principle for nonlinear contraction in a partial metric space}, journal = {Journal of nonlinear sciences and its applications}, pages = {37-43}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2012}, doi = {10.22436/jnsa.005.01.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.05/} }
TY - JOUR AU - Shatanawi, Wasfi AU - Nashine, Hemant Kumar TI - A generalization of Banachs contraction principle for nonlinear contraction in a partial metric space JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 37 EP - 43 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.05/ DO - 10.22436/jnsa.005.01.05 LA - en ID - JNSA_2012_5_1_a4 ER -
%0 Journal Article %A Shatanawi, Wasfi %A Nashine, Hemant Kumar %T A generalization of Banachs contraction principle for nonlinear contraction in a partial metric space %J Journal of nonlinear sciences and its applications %D 2012 %P 37-43 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.05/ %R 10.22436/jnsa.005.01.05 %G en %F JNSA_2012_5_1_a4
Shatanawi, Wasfi; Nashine, Hemant Kumar. A generalization of Banachs contraction principle for nonlinear contraction in a partial metric space. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 37-43. doi : 10.22436/jnsa.005.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.05/
[1] Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory, Article ID 508730, Volume 2011 (2011), pp. 1-10
[2] Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud. , Volume 1 (2008), pp. 1-8
[3] Generalized contractions on partial metric spaces, Topology Appl., Volume 157(18) (2010), pp. 2778-2785
[4] Some fixed point results in ordered partial metric spaces, accepted in J. Nonlinear Sci. Appl., , 2011
[5] Coupled fixed point results for (\(\psi,\phi\))-weakly contractive condition in ordered partial metric spaces, Computer Math. Appl, Volume 62 (2011), pp. 4446-4460
[6] Some remarks on a fixed point theorem for Ciric-type almost contractions, Carpathian J. Math. , Volume 25 (2009), p. 157-62
[7] General constructive fixed point theorems for Ciric-type almost contractions in metric spaces, Carpathian J. Math. , Volume 24 (2008), pp. 9-10
[8] Generalized contractions and fixed-point theorems, Publ. lInst Math. (Beograd) , Volume 12 (1971), pp. 19-26
[9] A generalization of Banachs contraction principle , Proc Amer. Math. Soc. , Volume 45 (1974), p. 267-73
[10] On contraction type mappings, Math Balkanica , Volume 1 (1971), pp. 1-527
[11] Fixed point theory, Contraction Mapping principle, FME Press, Beograd, 2003
[12] Coincidence and fixed points for maps on topological spaces, Topol. Appl. , Volume 154 (2007), pp. 3100-3106
[13] Fixed point theorems for multi-valued contractions in complete metric spaces, J. Math. Anal. Appl. , Volume 348 (2008), pp. 499-507
[14] Non-self mappings satisfying nonlinear contractive condition with applications, Nonlinear Anal., Volume 71 (2009), pp. 2927-2935
[15] Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput. , Volume 227 (12) (2011), pp. 5784-5789
[16] Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. Article ID 131294, Volume 2008 (2008), pp. 1-11
[17] Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. , Volume 218 (2011), pp. 2398-2406
[18] Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures , Volume 7 (1999), pp. 71-83
[19] Some new extensions of Banach's contraction princible to partial metric space, Appl. Math. Lett. , doi:10.1016/j.aml.2011.02.025 , 2011
[20] Weak \(\phi\)-contraction on partial contraction, J. Comput. Anal. Appl. , , in press
[21] Generalizations of Caristi Kirk's Theorem on Partial metric Spaces, Fixed Point Theory Appl. (in press)
[22] Partial metric topology, In, General Topology and its Applications, Proc. 8th Summer Conf., Queen's College (1992), Annals of the New York Academy of Sciences, Volume 728 (1994), pp. 183-197
[23] Fixed point results for mappings satisfying ( \(\psi,\varphi\))-weakly contractive condition in ordered partial metric spaces, accepted in Math. , Slovaca , 2011
[24] On Banach fixed point theorems for partial metric spaces, Applied General Topology , Volume 6(2) (2005), pp. 229-240
[25] Banach's fixed point theorem for partial metric spaces, Rendiconti dell'Istituto di Matematica dell'Universit di Trieste, Volume 36(1-2) (2004), pp. 17-26
[26] A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. Article ID 493298, Volume 2010 (2010), pp. 1-6
[27] An integral version of Ćirić s fixed point theorem, Mediterr J Math. , doi:10.1007/s00009- 011-0120-1.
[28] Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Mod., doi:10.1016/j.mcm.2011.08.042., 2011
Cité par Sources :