Orthogonal stability of a cubic-quartic functional equation
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 28-36.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Using fixed point method, we prove the Hyers-Ulam stability of the orthogonally cubic-quartic functional equation
$f(2x + y) + f(2x - y) = 3f(x + y) + f(-x - y) + 3f(x - y) + f(y - x) + 18f(x) + 6f(-x) - 3f(y) - 3f(-y)\quad (1)$
for all $x, y$ with $x \perp y$.
DOI : 10.22436/jnsa.005.01.04
Classification : 39B55, 47H10, 39B52, 46H25
Keywords: Hyers-Ulam stability, orthogonally cubic-quartic functional equation, fixed point, orthogonality space.

Park, Choonkil 1

1 Department of Mathematics, Hanyang University, Seoul 133-791, Korea
@article{JNSA_2012_5_1_a3,
     author = {Park, Choonkil},
     title = {Orthogonal stability of a cubic-quartic functional equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {28-36},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2012},
     doi = {10.22436/jnsa.005.01.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.04/}
}
TY  - JOUR
AU  - Park, Choonkil
TI  - Orthogonal stability of a cubic-quartic functional equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 28
EP  - 36
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.04/
DO  - 10.22436/jnsa.005.01.04
LA  - en
ID  - JNSA_2012_5_1_a3
ER  - 
%0 Journal Article
%A Park, Choonkil
%T Orthogonal stability of a cubic-quartic functional equation
%J Journal of nonlinear sciences and its applications
%D 2012
%P 28-36
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.04/
%R 10.22436/jnsa.005.01.04
%G en
%F JNSA_2012_5_1_a3
Park, Choonkil. Orthogonal stability of a cubic-quartic functional equation. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 28-36. doi : 10.22436/jnsa.005.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.04/

[1] Alonso, J.; Benítez, C. Orthogonality in normed linear spaces: a survey I, Main properties, Extracta Math. , Volume 3 (1988), pp. 1-15

[2] Alonso, J.; Benítez, C. Orthogonality in normed linear spaces: a survey II. Relations between main orthogonalities, Extracta Math. , Volume 4 (1989), pp. 121-131

[3] Birkhoff, G. Orthogonality in linear metric spaces, Duke Math. J. , Volume 1 (1935), pp. 169-172

[4] Cădariu, L.; Radu, V. Fixed points and the stability of Jensen's functional equation , J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 , 2003

[5] Cădariu, L.; Radu, V. On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. , Volume 346 (2004), pp. 43-52

[6] Cădariu, L.; Radu, V. Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications , Art. ID 749392 , 2008

[7] Carlsson, S. O. Orthogonality in normed linear spaces, Ark. Mat., Volume 4 (1962), pp. 297-318

[8] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math. , Volume 27 (1984), pp. 76-86

[9] S. Czerwik On the stability of the quadratic mapping in normed spaces , Abh. Math. Sem. Univ. Hamburg , Volume 62 (1992), pp. 59-64

[10] Czerwik, S. Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002

[11] Czerwik, S. Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003

[12] Diaz, J.; B. Margolis A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. , Volume 74 (1968), pp. 305-309

[13] Diminnie, C. R. A new orthogonality relation for normed linear spaces, Math. Nachr. , Volume 114 (1983), pp. 197-203

[14] Drljević, F. On a functional which is quadratic on A-orthogonal vectors, Publ. Inst. Math. (Beograd) , Volume 54 (1986), pp. 63-71

[15] Fochi, M. Functional equations in A-orthogonal vectors, Aequationes Math., Volume 38 (1989), pp. 28-40

[16] Ger, R.; Sikorska, J. Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. , Volume 43 (1995), pp. 143-151

[17] Gudder, S.; Strawther, D. Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math. , Volume 58 (1975), pp. 427-436

[18] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. , Volume 27 (1941), pp. 222-224

[19] Hyers, D. H.; Isac, G.; Rassias, Th. M. Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998

[20] Isac, G.; Rassias, Th. M. Stability of \(\psi\)-additive mappings: Appications to nonlinear analysis, Internat. J. Math. Math. Sci. , Volume 19 (1996), pp. 219-228

[21] James, R. C. Orthogonality in normed linear spaces, Duke Math. J. , Volume 12 (1945), pp. 291-302

[22] James, R. C. Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. , Volume 61 (1947), pp. 265-292

[23] Jun, K.; Kim, H. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. , Volume 274 (2002), pp. 867-878

[24] Jung, S. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Florida, 2001

[25] Jung, Y.; Chang, I. The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl. , Volume 306 (2005), pp. 752-760

[26] Lee, S.; Im, S.; Hwang, I. Quartic functional equations, J. Math. Anal. Appl., Volume 307 (2005), pp. 387-394

[27] Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. , Volume 343 (2008), pp. 567-572

[28] Mirzavaziri, M.; Moslehian, M. S. A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. , Volume 37 (2006), pp. 361-376

[29] Moslehian, M. S. On the orthogonal stability of the Pexiderized quadratic equation, J. Difference Equat. Appl. , Volume 11 (2005), pp. 999-1004

[30] Moslehian, M. S. On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl. , Volume 318 (2006), pp. 211-223

[31] Moslehian, M. S.; Th. M. Rassias Orthogonal stability of additive type equations, Aequationes Math. , Volume 73 (2007), pp. 249-259

[32] Paganoni, L.; Rätz, J. Conditional function equations and orthogonal additivity, Aequationes Math. , Volume 50 (1995), pp. 135-142

[33] Park, C. Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications, Art. ID 50175 , 2007

[34] Park, C. Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Applications, Art. ID 493751 , 2008

[35] Park, C.; Park, J. Generalized Hyers-Ulam stability of an Euler-Lagrange type additive mapping, J. Difference Equat. Appl., Volume 12 (2006), pp. 1277-1288

[36] Pinsker, A. G. Sur une fonctionnelle dans l'espace de Hilbert, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. , Volume 20 (1938), pp. 411-414

[37] Radu, V. The fixed point alternative and the stability of functional equations, Fixed Point Theory , Volume 4 (2003), pp. 91-96

[38] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[39] Rassias, Th. M. On the stability of the quadratic functional equation and its applications , Studia Univ. Babeş-Bolyai Math., Volume 43 (1998), pp. 89-124

[40] Rassias, Th. M. The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. , Volume 246 (2000), pp. 352-378

[41] Rassias, Th. M. On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. , Volume 251 (2000), pp. 264-284

[42] (ed.), Th. M. Rassias Functional Equations, Inequalities and Applications , Kluwer Academic Publishers, Dordrecht, , Boston and London, 2003

[43] Rätz, J. On orthogonally additive mappings, Aequationes Math., Volume 28 (1985), pp. 35-49

[44] Rätz, J.; Szabó, Gy. On orthogonally additive mappings IV , Aequationes Math. , Volume 38 (1989), pp. 73-85

[45] Skof, F. Proprieta locali e approssimazione di operatori , Rend. Sem. Mat. Fis. Milano , Volume 53 (1983), pp. 113-129

[46] Sundaresan, K. Orthogonality and nonlinear functionals on Banach spaces, Proc. Amer. Math. Soc. , Volume 34 (1972), pp. 187-190

[47] Szabó, Gy. Sesquilinear-orthogonally quadratic mappings, Aequationes Math. , Volume 40 (1990), pp. 190-200

[48] Ulam, S. M. Problems in Modern Mathematics, Wiley, New York, 1960

[49] Vajzović, F. Über das Funktional H mit der Eigenschaft: \((x; y) = 0\Rightarrow H(x + y) + H(x - y) = 2H(x) + 2H(y)\), Glasnik Mat. Ser. III , Volume 2 (22) (1967), pp. 73-81

Cité par Sources :