Voir la notice de l'article provenant de la source International Scientific Research Publications
$f(2x + y) + f(2x - y) = 3f(x + y) + f(-x - y) + 3f(x - y) + f(y - x) + 18f(x) + 6f(-x) - 3f(y) - 3f(-y)\quad (1)$ |
Park, Choonkil 1
@article{JNSA_2012_5_1_a3, author = {Park, Choonkil}, title = {Orthogonal stability of a cubic-quartic functional equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {28-36}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2012}, doi = {10.22436/jnsa.005.01.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.04/} }
TY - JOUR AU - Park, Choonkil TI - Orthogonal stability of a cubic-quartic functional equation JO - Journal of nonlinear sciences and its applications PY - 2012 SP - 28 EP - 36 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.04/ DO - 10.22436/jnsa.005.01.04 LA - en ID - JNSA_2012_5_1_a3 ER -
%0 Journal Article %A Park, Choonkil %T Orthogonal stability of a cubic-quartic functional equation %J Journal of nonlinear sciences and its applications %D 2012 %P 28-36 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.04/ %R 10.22436/jnsa.005.01.04 %G en %F JNSA_2012_5_1_a3
Park, Choonkil. Orthogonal stability of a cubic-quartic functional equation. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 28-36. doi : 10.22436/jnsa.005.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.04/
[1] Orthogonality in normed linear spaces: a survey I, Main properties, Extracta Math. , Volume 3 (1988), pp. 1-15
[2] Orthogonality in normed linear spaces: a survey II. Relations between main orthogonalities, Extracta Math. , Volume 4 (1989), pp. 121-131
[3] Orthogonality in linear metric spaces, Duke Math. J. , Volume 1 (1935), pp. 169-172
[4] Fixed points and the stability of Jensen's functional equation , J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 , 2003
[5] On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. , Volume 346 (2004), pp. 43-52
[6] Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications , Art. ID 749392 , 2008
[7] Orthogonality in normed linear spaces, Ark. Mat., Volume 4 (1962), pp. 297-318
[8] Remarks on the stability of functional equations, Aequationes Math. , Volume 27 (1984), pp. 76-86
[9] On the stability of the quadratic mapping in normed spaces , Abh. Math. Sem. Univ. Hamburg , Volume 62 (1992), pp. 59-64
[10] Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002
[11] Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003
[12] A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. , Volume 74 (1968), pp. 305-309
[13] A new orthogonality relation for normed linear spaces, Math. Nachr. , Volume 114 (1983), pp. 197-203
[14] On a functional which is quadratic on A-orthogonal vectors, Publ. Inst. Math. (Beograd) , Volume 54 (1986), pp. 63-71
[15] Functional equations in A-orthogonal vectors, Aequationes Math., Volume 38 (1989), pp. 28-40
[16] Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. , Volume 43 (1995), pp. 143-151
[17] Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math. , Volume 58 (1975), pp. 427-436
[18] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. , Volume 27 (1941), pp. 222-224
[19] Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998
[20] Stability of \(\psi\)-additive mappings: Appications to nonlinear analysis, Internat. J. Math. Math. Sci. , Volume 19 (1996), pp. 219-228
[21] Orthogonality in normed linear spaces, Duke Math. J. , Volume 12 (1945), pp. 291-302
[22] Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc. , Volume 61 (1947), pp. 265-292
[23] The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. , Volume 274 (2002), pp. 867-878
[24] Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, Florida, 2001
[25] The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl. , Volume 306 (2005), pp. 752-760
[26] Quartic functional equations, J. Math. Anal. Appl., Volume 307 (2005), pp. 387-394
[27] On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. , Volume 343 (2008), pp. 567-572
[28] A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. , Volume 37 (2006), pp. 361-376
[29] On the orthogonal stability of the Pexiderized quadratic equation, J. Difference Equat. Appl. , Volume 11 (2005), pp. 999-1004
[30] On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl. , Volume 318 (2006), pp. 211-223
[31] Orthogonal stability of additive type equations, Aequationes Math. , Volume 73 (2007), pp. 249-259
[32] Conditional function equations and orthogonal additivity, Aequationes Math. , Volume 50 (1995), pp. 135-142
[33] Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications, Art. ID 50175 , 2007
[34] Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Applications, Art. ID 493751 , 2008
[35] Generalized Hyers-Ulam stability of an Euler-Lagrange type additive mapping, J. Difference Equat. Appl., Volume 12 (2006), pp. 1277-1288
[36] Sur une fonctionnelle dans l'espace de Hilbert, C. R. (Dokl.) Acad. Sci. URSS, n. Ser. , Volume 20 (1938), pp. 411-414
[37] The fixed point alternative and the stability of functional equations, Fixed Point Theory , Volume 4 (2003), pp. 91-96
[38] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[39] On the stability of the quadratic functional equation and its applications , Studia Univ. Babeş-Bolyai Math., Volume 43 (1998), pp. 89-124
[40] The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. , Volume 246 (2000), pp. 352-378
[41] On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. , Volume 251 (2000), pp. 264-284
[42] Functional Equations, Inequalities and Applications , Kluwer Academic Publishers, Dordrecht, , Boston and London, 2003
[43] On orthogonally additive mappings, Aequationes Math., Volume 28 (1985), pp. 35-49
[44] On orthogonally additive mappings IV , Aequationes Math. , Volume 38 (1989), pp. 73-85
[45] Proprieta locali e approssimazione di operatori , Rend. Sem. Mat. Fis. Milano , Volume 53 (1983), pp. 113-129
[46] Orthogonality and nonlinear functionals on Banach spaces, Proc. Amer. Math. Soc. , Volume 34 (1972), pp. 187-190
[47] Sesquilinear-orthogonally quadratic mappings, Aequationes Math. , Volume 40 (1990), pp. 190-200
[48] Problems in Modern Mathematics, Wiley, New York, 1960
[49] Über das Funktional H mit der Eigenschaft: \((x; y) = 0\Rightarrow H(x + y) + H(x - y) = 2H(x) + 2H(y)\), Glasnik Mat. Ser. III , Volume 2 (22) (1967), pp. 73-81
Cité par Sources :