Solvability of multi-point boundary value problems on the half-line
Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 27-33.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this work, using the Leray-Schauder continuation principle, we study the existence of at least one solution to the quasilinear second-order multi-point boundary value problems on the half-line.
DOI : 10.22436/jnsa.005.01.03
Classification : 34B10, 34B15, 34B40
Keywords: Solvability, m-point boundary value problem, p-Laplacian, half-line

Kim, Chan-Gyun 1

1 Department of Mathematics, Pusan National University, 609-735, Korea
@article{JNSA_2012_5_1_a2,
     author = {Kim, Chan-Gyun},
     title = {Solvability of multi-point boundary value problems on the half-line},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {27-33},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2012},
     doi = {10.22436/jnsa.005.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.03/}
}
TY  - JOUR
AU  - Kim, Chan-Gyun
TI  - Solvability of multi-point boundary value problems on the half-line
JO  - Journal of nonlinear sciences and its applications
PY  - 2012
SP  - 27
EP  - 33
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.03/
DO  - 10.22436/jnsa.005.01.03
LA  - en
ID  - JNSA_2012_5_1_a2
ER  - 
%0 Journal Article
%A Kim, Chan-Gyun
%T Solvability of multi-point boundary value problems on the half-line
%J Journal of nonlinear sciences and its applications
%D 2012
%P 27-33
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.03/
%R 10.22436/jnsa.005.01.03
%G en
%F JNSA_2012_5_1_a2
Kim, Chan-Gyun. Solvability of multi-point boundary value problems on the half-line. Journal of nonlinear sciences and its applications, Tome 5 (2012) no. 1, p. 27-33. doi : 10.22436/jnsa.005.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.005.01.03/

[1] Agarwal, R. P.; O'Regan, D. Boundary value problems of nonlinear type on the semi-infinity interval, Tohoku Math. J., Volume 51 (1999), pp. 391-397

[2] Agarwal, R. P.; O'Regan, D. Infinite Interval Problems for Differential, Difference, and Integral Equations, Kluwer Academic, , 2001

[3] Chen, S.; Zhang, Y. Singular boundary value problems on a half-line, J. Math. Anal. Appl., Volume 195 (1995), pp. 449-468

[4] Djebali, S.; Saifi, O. Positive solutions for singular BVPs with sign changing and derivative depending nonlinearity on the positive half-line, Acta Appl. Math., Volume 110 (2010), pp. 639-665

[5] García-Huidobro, M.; Gupta, C. P.; Manásevich, R. A Dirichelet-Neumann m-point BVP with a p-Laplacian-like operator, Nonlinear Anal. T.M.A., Volume 62 (2005), pp. 1067-1089

[6] Guo, Y.; Yu, C.; Wang, J. Existence of three positive solutions for m-point boundary value problems on infinite intervals, Nonlinear Anal. T.M.A., Volume 71 (2009), pp. 717-722

[7] Hopkins, B.; Kosmatov, N. Third-order boundary value problems with sign-changing solutions , Nonlinear Anal. T.M.A., Volume 67 (2007), pp. 126-137

[8] Kim, C. G. Existence and iteration of positive solutions for multi-point boundary value problems on a half-line, Comput. Math. Appl., Volume 61 (2011), pp. 1898-1905

[9] Kosmatov, N. Multi-point boundary value problems on an unbounded domain at resonance, Nonlinear Anal. T.M.A., Volume 68 (2008), pp. 2158-2171

[10] Kosmatov, N. Second order boundary value problems on an unbounded domain, Nonlinear Anal. T.M.A., Volume 68 (2008), pp. 875-882

[11] Lian, H.; Ge, W. Solvability for second-order three-point boundary value problems on a half-line, Appl. Math. Lett., Volume 19 (2006), pp. 1000-1006

[12] Lian, H.; Pang, H.; Ge, W. Triple positive solutions for boundary value problems on infinite intervals, Nonlinear Anal. T.M.A., Volume 67 (2007), pp. 2199-2207

[13] Liang, S.; Zhang, J. Positive solutions for singular third order boundary value problem with dependence on the first order derivative on the half-line, Acta Appl. Math., Volume 111 (2010), pp. 27-43

[14] Liang, S.; Zhang, J.; Wang, Z. The existence of multiple positive solutions for multi-point boundary value problems on the half-line, J. Comput. Appl. Math., Volume 228 (2009), pp. 10-19

[15] Y. Liu Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Appl. Math. Comput., Volume 144 (2003), pp. 543-556

[16] Ma, R. Existence of positive solutions for second-order boundary value problems on infinite intervals, Appl. Math. Lett., Volume 16 (2003), pp. 33-39

[17] Ma, R.; O'Regan, D. Solvability of singular second order m-point boundary value problems , J. Math. Anal. Appl., Volume 301 (2005), pp. 124-134

[18] Mawhin, J. Topological Degree Methods in Nonlinear Boundary value Problems, NSF-CBMS Regional Conf. Ser. in Math., vol. 40, Amer. Math. Soc., Providence, RI, 1979

[19] O'Regan, D.; Yan, B.; Agarwal, R. P. Solutions in weighted spaces of singular boundary value problems on the half-line, J. Comput. Appl. Math., Volume 205 (2007), pp. 751-763

[20] Xu, J.; Yang, Z. Positive solutions for singular Sturm-Liouville boundary value problems on the half line, Electron. J. Differential Equations, Volume 171 (2010), pp. 1-8

[21] Zeidler, E. Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York., 1985

[22] Zhang, X. Successive iteration and positive solutions for a second-order multi-point boundary value problem on a half-line, Comput. Math. Appl., Volume 58 (2009), pp. 528-535

[23] Zima, M. On positive solutions of boundary value problems on the half-line, J. Math. Anal. Appl., Volume 259 (2001), pp. 127-136

Cité par Sources :