Voir la notice de l'article provenant de la source International Scientific Research Publications
Tomar , N. K.  1 ; Sukavanam, N. 2
@article{JNSA_2011_4_4_a7, author = {Tomar , N. K. and Sukavanam, N.}, title = {Exact {Controllability} of {Semilinear} {Third} {Order} {Dispersion} {Equation}}, journal = {Journal of nonlinear sciences and its applications}, pages = {308-314}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2011}, doi = {10.22436/jnsa.004.04.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.08/} }
TY - JOUR AU - Tomar , N. K. AU - Sukavanam, N. TI - Exact Controllability of Semilinear Third Order Dispersion Equation JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 308 EP - 314 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.08/ DO - 10.22436/jnsa.004.04.08 LA - en ID - JNSA_2011_4_4_a7 ER -
%0 Journal Article %A Tomar , N. K. %A Sukavanam, N. %T Exact Controllability of Semilinear Third Order Dispersion Equation %J Journal of nonlinear sciences and its applications %D 2011 %P 308-314 %V 4 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.08/ %R 10.22436/jnsa.004.04.08 %G en %F JNSA_2011_4_4_a7
Tomar , N. K. ; Sukavanam, N. Exact Controllability of Semilinear Third Order Dispersion Equation. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 308-314. doi : 10.22436/jnsa.004.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.08/
[1] On the change of the form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. , Volume 39 (1895), pp. 422-443
[2] Exact Controllability and Stabilizability of the Korteweg-de Vries Equation, Trans. Amer. Math. Soc. , Volume 348(9) (1996), pp. 3643-3672
[3] Exact Boundary Controllability for the Korteweg-de Vries Equation on a Bounded Domain, ESIAM Control Optim. Calc. Var. , Volume 2 (1997), pp. 33-55
[4] Exact Controllability for the Korteweg-de Vries Equation, SIAM J. Control Optim. , Volume 37(2) (1999), pp. 543-565
[5] Exact Boundary Controllability for the linear Korteweg-de Vries Equation on the half line, SIAM J. Control Optim. , Volume 39(2) (2000), pp. 331-351
[6] Stabilizing soliton transmission by third-order dispersion in dispersion-compensated fibre links, Pure Appl. Opt. , Volume 7(4) (1998), pp. 57-62
[7] Time Jitters caused by Third-Order Dispersion in Soliton Transmission System, Int. J. Infrared and Millimeter Waves , Volume 20(8) (1999), pp. 1541-1548
[8] Artificial Perturbation for Solving Korteweg-de Vries Equation, J. Zhejiang Univ. Sci. , Volume 7(12) (2006), pp. 2079-2082
[9] Controllability of Nonlinear Systems in Banach Spaces: A Survey, J. Optimization Theory and Applications , Volume 115(1) (2002), pp. 7-28
[10] Approximate Controllability of Non-densely defined Semilinear Delayed Control Systems, Nonlinear Studies, Volume 18(2) (2011), pp. 229-234
[11] Approximate Controllability of Semilinear Functional Equations in Hilbert Spaces, J. Math. Anal. Appl., Volume 273 (2002), pp. 310-327
[12] Controllability for semilinear functional integrodifferential equations, Bull. Korean Math. Soc., Volume 46(3) (2009), pp. 463-475
[13] Controllability of impulsive Quasi-linear Fractional mixed volterra-Fredholm-type integrodifferential equations in Banach Spaces, J. Nonlineare Sci. Appl., Volume 4(2) (2011), pp. 152-159
[14] Controllability and Stabilizability of the Third-order Linear Dispersion Equation on a Periodic Domain, SIAM J. Control Optim. , Volume 31(3) (1993), pp. 659-676
[15] Exact Controllability of the Nonlinear Third-order Dispersion Equation, J. Math. Anal. Appl. , Volume 332 (2007), pp. 1028-1044
[16] Semigroup of Linear operators and Application to Partial Differential Equations, Springer-Verlag , New York Inc., 1983
[17] Applied Fuctional Analysis: Main Principles and Their Applications, Applied Mathematical Sciences Vol. 109, Springer-Verlag , New York Inc., 1995
Cité par Sources :