Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 292-307.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove that an implicit random iteration process with errors which is generated by a finite family of asymptotically quasi- nonexpansive random operators converges strongly to a common random fixed point of the random operators in uniformly convex Banach spaces.
DOI : 10.22436/jnsa.004.04.07
Classification : 47H09, 47H10, 47J25
Keywords: Asymptotically quasi nonexpansive random operator, common random fixed point, implicit random iteration scheme with errors, strong convergence, uniformly convex Banach space.

SALUJA, GURUCHARAN SINGH  1

1 Department of Mathematics and Information Technology, Govt. Nagarjuna P.G. College of Science, Raipur (C.G.), India
@article{JNSA_2011_4_4_a6,
     author = {SALUJA, GURUCHARAN SINGH },
     title = {Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {292-307},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2011},
     doi = {10.22436/jnsa.004.04.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.07/}
}
TY  - JOUR
AU  - SALUJA, GURUCHARAN SINGH 
TI  - Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 292
EP  - 307
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.07/
DO  - 10.22436/jnsa.004.04.07
LA  - en
ID  - JNSA_2011_4_4_a6
ER  - 
%0 Journal Article
%A SALUJA, GURUCHARAN SINGH 
%T Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators
%J Journal of nonlinear sciences and its applications
%D 2011
%P 292-307
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.07/
%R 10.22436/jnsa.004.04.07
%G en
%F JNSA_2011_4_4_a6
SALUJA, GURUCHARAN SINGH . Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 292-307. doi : 10.22436/jnsa.004.04.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.07/

[1] Badshah, V. H.; F. Sayyed Common random fixed points of random multivalued operators on polish spaces, Indian J. Pure and Appl. Maths. , Volume 33(4) (2002), pp. 573-582

[2] I. Beg Random fixed points of random operators satisfying semicontractivity conditions, Maths. Japonica , Volume 46(1) (1997), pp. 151-155

[3] Beg, I. Approximation of random fixed points in normed spaces, Nonlinear Anal. , Volume 51(8) (2002), pp. 1363-1372

[4] Beg, I.; Abbas, M. Equivalence and stability of random fixed point iterative procedures, J. Appl. Maths. Stoch. Anal. (2006), pp. 1-19

[5] Beg, I.; Abbas, M. Iterative procedures for solutions of random operator equations in Banach spaces, J. Math. Anal. Appl. , Volume 315(1) (2006), pp. 181-201

[6] Beg, I.; Abbas, M. Convergence of iterative algorithms to common random fixed points of random operators, J. Appl. Maths. Stoch. Anal. (2006), pp. 1-16

[7] Shahzad Common random fixed points of random multivalued operators on metric spaces, Boll. della Unione Math. Italiana , Volume 9(3) (1995), pp. 493-503

[8] Bharucha-Reid, A. T. Random Integral equations, Mathematics in Science and Engineering, vol. 96, Academic Press, New York, 1972

[9] Bharucha-Reid, A. T. Fixed point theorems in Probabilistic analysis, Bull. Amer. Math. Soc., Volume 82(5) (1976), pp. 641-657

[10] Chang, S. S.; Tan, K. K.; Lee, H. W. J.; Chan, C. K. On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Maths. Anal. Appl. , Volume 313(1) (2006), pp. 273-283

[11] Choudhury, B. S. Convergence of a random iteration scheme to a random fixed point, J. Appl. Maths. Stoch. Anal. , Volume 8(2) (1995), pp. 139-142

[12] Hans, O. Reduzierende zufallige transformationen, Czech. Math. J. , Volume 7(82) (1957), pp. 154-158

[13] Hans, O. Random operator equations, Proc. of the 4th Berkeley Sympos. on Mathematical Statistics and Probability, Vol. II, University of California Press, California (1961), pp. 185-202

[14] Himmelberg, C. J. Measurable relations, Fundamenta Mathematicae , Volume 87 (1975), pp. 53-72

[15] Itoh Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. , Volume 67(2) (1979), pp. 261-273

[16] Kim, J. K.; Kim, K. S.; Kim, S. M. Convergence theorems of implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces, Nonlinear Anal. and Convex Anal. RIMS , Volume 1484 (2006), pp. 40-51

[17] Papageorgiou, N. S. Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. , Volume 97(3) (1986), pp. 507-514

[18] Papageorgiou, N. S. On measurable multifunctions with stochastic domain, J. Austra. Math. Soc. Ser. A , Volume 45(2) (1988), pp. 204-216

[19] Penaloza, R. A characterization of renegotiation proof contracts via random fixed points in Banach spaces, working paper 269, Department of Economics, Univ. Brasilia, Brasilia, 2002

[20] Schu, J. Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. , Volume 43 (1991), pp. 153-159

[21] Sehgal, V. M.; Singh, S. P. On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc. , Volume 95(1) (1985), pp. 91-94

[22] Senter, H. F.; W. G. Dotson Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. , Volume 44 (1974), pp. 375-380

[23] Sun, Z. H. Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., Volume 286 (2003), pp. 351-358

[24] Tan, K. K.; Xu, H. K. Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. , Volume 178 (1993), pp. 301-308

[25] Wagner, D. H. Survey of measurable selection theorem, SIAM J. Contr. Optim. , Volume 15(5) (1977), pp. 859-903

[26] Wittmann, R. Approximation of fixed points of nonexpansive mappings, Arch. Math., Volume 58 (1992), pp. 486-491

[27] Xu, H. K.; Ori, R. G. An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. , Volume 22 (2001), pp. 767-773

Cité par Sources :