Voir la notice de l'article provenant de la source International Scientific Research Publications
SALUJA, GURUCHARAN SINGH  1
@article{JNSA_2011_4_4_a6, author = {SALUJA, GURUCHARAN SINGH }, title = {Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators}, journal = {Journal of nonlinear sciences and its applications}, pages = {292-307}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2011}, doi = {10.22436/jnsa.004.04.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.07/} }
TY - JOUR AU - SALUJA, GURUCHARAN SINGH TI - Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 292 EP - 307 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.07/ DO - 10.22436/jnsa.004.04.07 LA - en ID - JNSA_2011_4_4_a6 ER -
%0 Journal Article %A SALUJA, GURUCHARAN SINGH %T Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators %J Journal of nonlinear sciences and its applications %D 2011 %P 292-307 %V 4 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.07/ %R 10.22436/jnsa.004.04.07 %G en %F JNSA_2011_4_4_a6
SALUJA, GURUCHARAN SINGH . Convergence of implicit random iteration process with errors for a finite family of asymptotically quasi-nonexpansive random operators. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 292-307. doi : 10.22436/jnsa.004.04.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.07/
[1] Common random fixed points of random multivalued operators on polish spaces, Indian J. Pure and Appl. Maths. , Volume 33(4) (2002), pp. 573-582
[2] Random fixed points of random operators satisfying semicontractivity conditions, Maths. Japonica , Volume 46(1) (1997), pp. 151-155
[3] Approximation of random fixed points in normed spaces, Nonlinear Anal. , Volume 51(8) (2002), pp. 1363-1372
[4] Equivalence and stability of random fixed point iterative procedures, J. Appl. Maths. Stoch. Anal. (2006), pp. 1-19
[5] Iterative procedures for solutions of random operator equations in Banach spaces, J. Math. Anal. Appl. , Volume 315(1) (2006), pp. 181-201
[6] Convergence of iterative algorithms to common random fixed points of random operators, J. Appl. Maths. Stoch. Anal. (2006), pp. 1-16
[7] Common random fixed points of random multivalued operators on metric spaces, Boll. della Unione Math. Italiana , Volume 9(3) (1995), pp. 493-503
[8] Random Integral equations, Mathematics in Science and Engineering, vol. 96, Academic Press, New York, 1972
[9] Fixed point theorems in Probabilistic analysis, Bull. Amer. Math. Soc., Volume 82(5) (1976), pp. 641-657
[10] On the convergence of implicit iteration process with error for a finite family of asymptotically nonexpansive mappings, J. Maths. Anal. Appl. , Volume 313(1) (2006), pp. 273-283
[11] Convergence of a random iteration scheme to a random fixed point, J. Appl. Maths. Stoch. Anal. , Volume 8(2) (1995), pp. 139-142
[12] Reduzierende zufallige transformationen, Czech. Math. J. , Volume 7(82) (1957), pp. 154-158
[13] Random operator equations, Proc. of the 4th Berkeley Sympos. on Mathematical Statistics and Probability, Vol. II, University of California Press, California (1961), pp. 185-202
[14] Measurable relations, Fundamenta Mathematicae , Volume 87 (1975), pp. 53-72
[15] Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. , Volume 67(2) (1979), pp. 261-273
[16] Convergence theorems of implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces, Nonlinear Anal. and Convex Anal. RIMS , Volume 1484 (2006), pp. 40-51
[17] Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. , Volume 97(3) (1986), pp. 507-514
[18] On measurable multifunctions with stochastic domain, J. Austra. Math. Soc. Ser. A , Volume 45(2) (1988), pp. 204-216
[19] A characterization of renegotiation proof contracts via random fixed points in Banach spaces, working paper 269, Department of Economics, Univ. Brasilia, Brasilia, 2002
[20] Weak and strong convergence theorems to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. , Volume 43 (1991), pp. 153-159
[21] On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc. , Volume 95(1) (1985), pp. 91-94
[22] Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. , Volume 44 (1974), pp. 375-380
[23] Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., Volume 286 (2003), pp. 351-358
[24] Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. , Volume 178 (1993), pp. 301-308
[25] Survey of measurable selection theorem, SIAM J. Contr. Optim. , Volume 15(5) (1977), pp. 859-903
[26] Approximation of fixed points of nonexpansive mappings, Arch. Math., Volume 58 (1992), pp. 486-491
[27] An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. , Volume 22 (2001), pp. 767-773
Cité par Sources :