Controllability of nonlocal impulsive functional integrodifferential evolution systems
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 281-291.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we establish a set of sufficient conditions for the controllability of nonlocal impulsive functional integrodifferential evolution systems with finite delay. The controllability results are obtained with out assuming the compactness condition on the evolution operator by using the semigroup theory and applying the fixed point approach. An example is provided to illustrate the theory.
DOI : 10.22436/jnsa.004.04.06
Classification : 93B05, 34B10, 34G25
Keywords: Controllability, impulsive integrodifferential system, evolution operator, fixed point theorem, nonlocal condition.

Radhakrishnan , B.  1 ; Balachandran, K. 1

1 Department of Mathematics, Bharathiar University, Coimbatore, Tamil nadu, India
@article{JNSA_2011_4_4_a5,
     author = {Radhakrishnan , B.  and Balachandran, K.},
     title = {Controllability of nonlocal impulsive functional integrodifferential evolution systems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {281-291},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2011},
     doi = {10.22436/jnsa.004.04.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.06/}
}
TY  - JOUR
AU  - Radhakrishnan , B. 
AU  - Balachandran, K.
TI  - Controllability of nonlocal impulsive functional integrodifferential evolution systems
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 281
EP  - 291
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.06/
DO  - 10.22436/jnsa.004.04.06
LA  - en
ID  - JNSA_2011_4_4_a5
ER  - 
%0 Journal Article
%A Radhakrishnan , B. 
%A Balachandran, K.
%T Controllability of nonlocal impulsive functional integrodifferential evolution systems
%J Journal of nonlinear sciences and its applications
%D 2011
%P 281-291
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.06/
%R 10.22436/jnsa.004.04.06
%G en
%F JNSA_2011_4_4_a5
Radhakrishnan , B. ; Balachandran, K. Controllability of nonlocal impulsive functional integrodifferential evolution systems. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 281-291. doi : 10.22436/jnsa.004.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.06/

[1] Balachandran, K.; Dauer, J. P. Controllability of nonlinear systems via Fixed Point Theorems, J. Optim. Theory and Appl., Volume 53 (1987), pp. 345-352

[2] Balachandran, K.; Dauer, J. P. Controllability of nonlinear systems in Banach spaces, A survey, J. Optim. Theory and Appl., Volume 115 (2002), pp. 7-28

[3] Balachandran, K.; Park, J. Y. Existence of a mild solution of a functional integrodifferential equation with nonlocal condition, Bull.Korean Math. Soc., Volume 38 (2001), pp. 175-182

[4] Balachandran, K.; Chandrasekaran, M. Existence of solutions of a delay differential equation with nonlocal condition, Indian. J. Pure Appl. Math., Volume 27 (1996), pp. 443-449

[5] Byszewski, L.; Lakshmikantham, V. Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a banach space, Appl. Anal. , Volume 40 (1991), pp. 11-19

[6] L. Byszewski Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., Volume 162 (1991), pp. 494-505

[7] Byszewski, L.; Akca, H. On a mild solutions of a semilinear functional differential evolution nonlocal problem, J. Appl. Math. Stoch. Anal., Volume 3 (1997), pp. 265-271

[8] Byszewski, L.; Akca, H. Existence of solutions of a semilinear functional-differential evolution nonlocal problem, Nonlinear Anal., Volume 34 (1998), pp. 65-72

[9] Chang, Y. K. Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos, Solitons and Fractals , Volume 33 (2007), pp. 1601-1609

[10] Friedman, A. Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969

[11] Fu, X.; Y. Cao Existence for neutral impulsive differential inclusions with nonlocal conditions, Nonlinear Anal., Volume 68 (2008), pp. 3707-3718

[12] Guo, D.; Liu, X. Extremal solutions of nonlinear impulsive integrodifferential equations in Banach spaces, J. Math. Anal. Appl., Volume 177 (1993), pp. 538-552

[13] George, R. K.; Nandakumaran, A. K.; Arapostathis, A. A note on controllability of impulsive systems, J. Math. Anal. Appl., Volume 241 (2000), pp. 276-283

[14] Guan, Z. H.; Qian, T. H.; X. Yu On controllability and observability for a class of impulsive systems, Systems and Control Letters, Volume 47 (2002), pp. 247-257

[15] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989

[16] Li, M.; Wang, M.; F. Zhang Controllability of impulsive functional differential systems in Banach spaces, Chaos, Solitons and Fractals, Volume 29 (2006), pp. 175-181

[17] Lin, Y.; J. H. Liu Semilinear integrodifferential equations with nonlocal Cauchy problem, Nonlinear Anal., Volume 26 (1996), pp. 1023-1033

[18] J. Liang; Liu, J. H.; Xiao, T. J. Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comp. Modelling, Volume 49 (2009), pp. 798-804

[19] A. Pazy Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer- Verlag, New York, 1983

[20] Radhakrishnan, B.; K. Balachandran Controllability of impulsive neutral functional evolution integrodifferential systems with infinite delay, Nonlinear Anal.: Hybrid Sys., Volume 5 (2011), pp. 655-670

[21] Samoilenko, A. M.; Perestyuk, N. A. Impulsive Differential Equations, World Scientific, Singapore, 1995

[22] Xie, G.; Wang, L. Controllability and observability of a class of linear impulsive systems , J. Math. Anal. Appl., Volume 304 (2005), pp. 336-355

Cité par Sources :