Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \begin{cases} u''(t) + \beta^2u(t) = h(t)f(t, u(t)),\,\,\,\,\, 0 t 1,\\ u'(0) = 0, u(1) =\Sigma^{m-2}_{i=1}\alpha_i u(\eta_i), \end{cases} $ |
Wang, Fuli 1
@article{JNSA_2011_4_4_a3, author = {Wang, Fuli}, title = {Triple solutions for nonlinear singular m-point boundary value problem}, journal = {Journal of nonlinear sciences and its applications}, pages = {262-269}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2011}, doi = {10.22436/jnsa.004.04.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.04/} }
TY - JOUR AU - Wang, Fuli TI - Triple solutions for nonlinear singular m-point boundary value problem JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 262 EP - 269 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.04/ DO - 10.22436/jnsa.004.04.04 LA - en ID - JNSA_2011_4_4_a3 ER -
%0 Journal Article %A Wang, Fuli %T Triple solutions for nonlinear singular m-point boundary value problem %J Journal of nonlinear sciences and its applications %D 2011 %P 262-269 %V 4 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.04/ %R 10.22436/jnsa.004.04.04 %G en %F JNSA_2011_4_4_a3
Wang, Fuli. Triple solutions for nonlinear singular m-point boundary value problem. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 262-269. doi : 10.22436/jnsa.004.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.04/
[1] On the theory of nonlocal boundary value problems, Soviet Math. Dokl. , Volume 30 (1984), pp. 8-10
[2] On a class of conditionally solvable nonlocal boundary value problems for harmonic functions, Soviet Math. Dokl. , Volume 31 (1985), pp. 91-94
[3] Nonlocal boundary value problems of the second kind for a Sturm- CLiouville operator, J. Differential Equations , Volume 23 (1987), pp. 979-987
[4] Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. , Volume 168 (1992), pp. 540-551
[5] Multiple positive solutions for nonlinear singular third order boundary value problem in abstract spaces, J. Nonlinear. Sci. Appl., Volume 1(1) (2008), pp. 36-44
[6] Nonlinear solutions of singular second order three-point boundary value problem at resonance, J. Nonlinear. Sci. Appl., Volume 1(1) (2008), pp. 49-55
[7] Existence and multiplicity of positive solutions for p-Laplacian boundary value problem on time scales, J. Nonlinear. Sci. Appl. , Volume 3(1) (2010), pp. 32-38
[8] Solvability of a nonlinear boundary value problem, J. Nonlinear. Sci. Appl. , Volume 4(4) (2011), pp. 247-261
[9] Existence of nonnegative solutions for second order m-point boundary value problems at resonance, Appl. Math. Comput. , Volume 217 (2011), pp. 4849-4855
[10] Positive solutions of m-point boundary value problems, J. Math. Anal. Appl. , Volume 291 (2004), pp. 406-418
[11] Multiple positive solutions of singular second-orderm-point boundary value problems, J. Math. Anal. Appl. , Volume 317 (2006), pp. 442-447
[12] Nontrivial solutions of singular superlinear m-point boundary value problems, Appl. Math.Comp. , Volume 187 (2007), pp. 1256-1264
[13] Positive solutions for a three-point boundary value problem, Nonlinear Anal., Volume 66 (3) (2007), pp. 679-688
[14] Positive solutions for an m-point boundary value problem, Electron. J. Differential Eqns., Volume 111 (2008), pp. 1-11
[15] Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana University Math. J., Volume 28 (1979), pp. 673-688
Cité par Sources :