Triple solutions for nonlinear singular m-point boundary value problem
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 262-269.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the existence of three solutions to the following nonlinear m-point boundary value problem
$ \begin{cases} u''(t) + \beta^2u(t) = h(t)f(t, u(t)),\,\,\,\,\, 0 t 1,\\ u'(0) = 0, u(1) =\Sigma^{m-2}_{i=1}\alpha_i u(\eta_i), \end{cases} $
where $0\beta\frac{\pi}{2}, f\in C([0,1]\times \mathbb{R}^+, \mathbb{R}^+). h(t)$ is allowed to be singular at $t = 0$ and $t = 1$. The arguments are based only upon the Leggett-Williams fixed point theorem. We also prove nonexist results.
DOI : 10.22436/jnsa.004.04.04
Classification : 34B15, 34B25
Keywords: m-point boundary value problem, Positive solutions, Fixed point theorem.

Wang, Fuli 1

1 School of Mathematics and Physics, Changzhou University, Changzhou, China
@article{JNSA_2011_4_4_a3,
     author = {Wang, Fuli},
     title = {Triple solutions for nonlinear singular m-point boundary value problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {262-269},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2011},
     doi = {10.22436/jnsa.004.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.04/}
}
TY  - JOUR
AU  - Wang, Fuli
TI  - Triple solutions for nonlinear singular m-point boundary value problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 262
EP  - 269
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.04/
DO  - 10.22436/jnsa.004.04.04
LA  - en
ID  - JNSA_2011_4_4_a3
ER  - 
%0 Journal Article
%A Wang, Fuli
%T Triple solutions for nonlinear singular m-point boundary value problem
%J Journal of nonlinear sciences and its applications
%D 2011
%P 262-269
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.04/
%R 10.22436/jnsa.004.04.04
%G en
%F JNSA_2011_4_4_a3
Wang, Fuli. Triple solutions for nonlinear singular m-point boundary value problem. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 262-269. doi : 10.22436/jnsa.004.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.04/

[1] Bitsadze, A. V. On the theory of nonlocal boundary value problems, Soviet Math. Dokl. , Volume 30 (1984), pp. 8-10

[2] Bitsadze, A. V.; Samarskii, A. A. On a class of conditionally solvable nonlocal boundary value problems for harmonic functions, Soviet Math. Dokl. , Volume 31 (1985), pp. 91-94

[3] Il’in, V. A.; Moiseev, E. I. Nonlocal boundary value problems of the second kind for a Sturm- CLiouville operator, J. Differential Equations , Volume 23 (1987), pp. 979-987

[4] C. P. Gupta Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. , Volume 168 (1992), pp. 540-551

[5] Zhang, F. Multiple positive solutions for nonlinear singular third order boundary value problem in abstract spaces, J. Nonlinear. Sci. Appl., Volume 1(1) (2008), pp. 36-44

[6] Wu, X. R.; Wang, F. Nonlinear solutions of singular second order three-point boundary value problem at resonance, J. Nonlinear. Sci. Appl., Volume 1(1) (2008), pp. 49-55

[7] Pang, Y. Y.; Bai, Z. B. Existence and multiplicity of positive solutions for p-Laplacian boundary value problem on time scales, J. Nonlinear. Sci. Appl. , Volume 3(1) (2010), pp. 32-38

[8] Guezane-Lakoud, A.; Kelaiaia, S. Solvability of a nonlinear boundary value problem, J. Nonlinear. Sci. Appl. , Volume 4(4) (2011), pp. 247-261

[9] Wang, F.; Cui, Y.; Zhang, F. Existence of nonnegative solutions for second order m-point boundary value problems at resonance, Appl. Math. Comput. , Volume 217 (2011), pp. 4849-4855

[10] Zhang, G.; Sun, J. Positive solutions of m-point boundary value problems, J. Math. Anal. Appl. , Volume 291 (2004), pp. 406-418

[11] Zhang, G.; Sun, J. Multiple positive solutions of singular second-orderm-point boundary value problems, J. Math. Anal. Appl. , Volume 317 (2006), pp. 442-447

[12] Cui, Y.; Zou, Y. Nontrivial solutions of singular superlinear m-point boundary value problems, Appl. Math.Comp. , Volume 187 (2007), pp. 1256-1264

[13] Han, X. Positive solutions for a three-point boundary value problem, Nonlinear Anal., Volume 66 (3) (2007), pp. 679-688

[14] Truong, L. X.; Ngoc, L. T. P.; Long, N. T. Positive solutions for an m-point boundary value problem, Electron. J. Differential Eqns., Volume 111 (2008), pp. 1-11

[15] Leggett, R. W.; Williams, L. R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana University Math. J., Volume 28 (1979), pp. 673-688

Cité par Sources :