Solvability of a nonlinear boundary value problem
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 247-261.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we consider three point boundary value problems of second order. We introduce new and sufficient conditions that allow us to obtain the existence of a nontrivial solution by using Leray Schauder nonlinear alternative. As an application, we give some examples to illustrate our results.
DOI : 10.22436/jnsa.004.04.03
Classification : 34B10, 34B15
Keywords: Fixed point theorem, Three point boundary value problem, Non trivial solution.

Guezane-Lakoud, A.  1 ; KELAIAIA, S.  1

1 Laboratory of Advanced Materials, Faculty of Sciences, Badji Mokhtar University, P. O. Box 12, Annaba, Algeria
@article{JNSA_2011_4_4_a2,
     author = {Guezane-Lakoud, A.   and KELAIAIA, S. },
     title = {Solvability of a nonlinear boundary value problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {247-261},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2011},
     doi = {10.22436/jnsa.004.04.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.03/}
}
TY  - JOUR
AU  - Guezane-Lakoud, A.  
AU  - KELAIAIA, S. 
TI  - Solvability of a nonlinear boundary value problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 247
EP  - 261
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.03/
DO  - 10.22436/jnsa.004.04.03
LA  - en
ID  - JNSA_2011_4_4_a2
ER  - 
%0 Journal Article
%A Guezane-Lakoud, A.  
%A KELAIAIA, S. 
%T Solvability of a nonlinear boundary value problem
%J Journal of nonlinear sciences and its applications
%D 2011
%P 247-261
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.03/
%R 10.22436/jnsa.004.04.03
%G en
%F JNSA_2011_4_4_a2
Guezane-Lakoud, A.  ; KELAIAIA, S. . Solvability of a nonlinear boundary value problem. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 247-261. doi : 10.22436/jnsa.004.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.03/

[1] Agarwal, R. A.; O’Regan, D. Infinite interval problems modelling phenomena which arise in the theory of plasma and electrical theory, Studies. Appl. Math., Volume 111 (2003), pp. 339-358

[2] Boukerrioua, K.; Guezane-Lakoud, A. Some nonlinear integral inequalities arising in differential equations, EJDE, Volume 80 (2008), pp. 1-6

[3] Deimling, K. Nonlinear Functional Analysis, Springer, Berlin, 1985

[4] Infante, G.; Webb, J. R. L. Three point boundary value problems with solutions that change sign , J. Integ. Eqns Appl., Volume 15 (2003), pp. 37-57

[5] Infante, G.; Webb, J. R. L. Loss of positivity in a nonlinear scalar heat equation, NoDEA Nonlinear Differential Equations Appl., Volume 13 (2006), pp. 249-261

[6] Infante, G.; Webb, J. R. L. Nonlinear nonlocal boundary value problems and perturbed Hammerstein integral equations, Proc. Edinb. Math. Soc., Volume 49 (2006), pp. 637-656

[7] Infante, G. Positive solutions of nonlocal boundary value problems with singularities, Discrete Contin. Dyn. Syst. Dynamical Systems, Differential Equations and Applications. 7th AIMS Conference, suppl. (2009), pp. 377-384

[8] Il’in, V. A.; Moiseev, E. I. Nonlocal boundary value problem of the first kind for a Sturm- Liouville operator in its differential and finite difference aspects, Differential Equations, Volume 23 (7) (1987), pp. 803-810

[9] Fan, H.; R. Ma Loss of positivity in a nonlinear second order ordinary differential equations, Nonlinear Anal., Volume 71 (2009), pp. 437-444

[10] Feng, W.; Webb, J. R. L. Solvability of three point nonlinear boundary value problems at resonance, Nonlinear Analysis TMA., Volume 30 (6) (1997), pp. 3227-3238

[11] Guidotti, P.; Merino, S. Gradual loss of positivity and hidden invariant cones in a scalar heat equation, Differential Integral Equations, Volume 13 (2000), pp. 1551-1568

[12] Gupta, C. P. Solvability of a three-point nonlinear boundary value problem for a second order differential equation, J. Math. Anal. Appl., Volume 168 (1992), pp. 540-551

[13] Khan, R. A.; Asif, N. A. Positive solutions for a class of singular two point boundary value problems, J. Nonlinear. Sci. Appl., Volume 2 (2009), pp. 126-135

[14] S. A. Krasnoselskii A remark on a second order three-point boundary value problem, J. Math. Anal. Appl., Volume 183 (1994), pp. 581-592

[15] Ma, R. Existence theorems for second order three-point boundary value problems, J. Math. Anal. Appl., Volume 212 (1997), pp. 545-555

[16] Ma, R. A Survey On nonlocal boundary value problems, Applied Mathematics E-Notes, Volume 7 (2007), pp. 257-279

[17] Palamides, P. K.; Infante, G.; Pietramala, P. Nontrivial solutions of a nonlinear heat flow problem via Sperner’s Lemma, Applied Mathematics Letters, Volume 22 (2009), pp. 1444-1450

[18] Shuhong, L.; Sun, Y-P. Nontrivial solution of a nonlinear second order three point boundary value problem, Appl. Math. J., Volume 22 (1) (2007), pp. 37-47

[19] Sivasankaran, S.; Arjunan, M. Mallika; Vijayakumar, V. Existence of global solutions for impulsive functional differential equations with nonlocal conditions , J. Nonlinear. Sci. Appl., Volume 4 (2) (2011), pp. 102-114

[20] Sun, Y-P. Nontrivial solution for a three-point boundary-value problem, EJDE, Volume 111 (2004), pp. 1-10

[21] Webb, J. R. L. Optimal constants in a nonlocal boundary value problem, Nonlinear Anal., Volume 63 (2005), pp. 672-685

[22] Zhang, F. Multiple positive solution for nonlinear singular third order boundary value problem in abstract spaces, J. Nonlinear. Sci. Appl. , Volume 1 (1) (2008), pp. 36-44

Cité par Sources :