Voir la notice de l'article provenant de la source International Scientific Research Publications
Vinodkumar, A. 1
@article{JNSA_2011_4_4_a1, author = {Vinodkumar, A.}, title = {Existence, {Uniqueness} and {Stability} {Results} of {Impulsive} {Stochastic} {Semilinear} {Functional} {Differential} {Equations} with {Infinite} {Delays}}, journal = {Journal of nonlinear sciences and its applications}, pages = {236-246}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2011}, doi = {10.22436/jnsa.004.04.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.02/} }
TY - JOUR AU - Vinodkumar, A. TI - Existence, Uniqueness and Stability Results of Impulsive Stochastic Semilinear Functional Differential Equations with Infinite Delays JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 236 EP - 246 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.02/ DO - 10.22436/jnsa.004.04.02 LA - en ID - JNSA_2011_4_4_a1 ER -
%0 Journal Article %A Vinodkumar, A. %T Existence, Uniqueness and Stability Results of Impulsive Stochastic Semilinear Functional Differential Equations with Infinite Delays %J Journal of nonlinear sciences and its applications %D 2011 %P 236-246 %V 4 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.02/ %R 10.22436/jnsa.004.04.02 %G en %F JNSA_2011_4_4_a1
Vinodkumar, A. Existence, Uniqueness and Stability Results of Impulsive Stochastic Semilinear Functional Differential Equations with Infinite Delays. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 236-246. doi : 10.22436/jnsa.004.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.02/
[1] Existence results for an impulsive partial neutral functional differential equations with state - dependent delay, Appl. Anal. , Volume 86 (2007), pp. 861-872
[2] Existence, Uniqueness and Stability Results of Impulsive Stochastic Semilinear Neutral Functional Differential Equations with Infinite Delays, E .J. Qualitative Theory of Differential Equations , Volume 67 (2009), pp. 1-13
[3] Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients, J. Comput. Math. Appl. , Volume 59 (2010), pp. 207-214
[4] A generalization of a lemma of Bellman and its application to uniqueness problem of differential equations, Acta Math. Acad. Sci. Hungar. , Volume 7 (1956), pp. 71-94
[5] Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992
[6] Stability of mild solutions of stochastic evolution equations with variable delay, Stochastic Anal. Appl. , Volume 21 (2003), pp. 1059-1077
[7] Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl. , Volume 331 (2007), pp. 1135-1158
[8] Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989
[9] Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, Newyork, 1983
[10] Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay, Appl. Math. Comput. , Volume 210 (2009), pp. 72-79
[11] Remarks on the existence and uniqueness of the solutions to stochastic functional differential equations with infinite delay, J. Comput. Appl. Math. , Volume 220 (2008), pp. 364-372
[12] Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl. , Volume 342 (2009), pp. 753-760
[13] Asymptotic stability of nonlinear impulsive stochastic differential equations , Statist. Probab. Lett. , Volume 79 (2009), pp. 1219-1223
[14] Impulsive Differential Equations, World Scientific, Singapore, 1995
[15] Mean square stability analysis of impulsive stochastic differential equations with delays, J. Comput. Appl. Math. , Volume 216 (2008), pp. 474-483
[16] Exponential p- stability of impulsive stochastic differential equations with delays, Physics Letter A , Volume 356 (2006), pp. 129-137
Cité par Sources :