Voir la notice de l'article provenant de la source International Scientific Research Publications
Singh , Karunesh Kumar  1 ; Agrawal, P. N. 1
@article{JNSA_2011_4_4_a0, author = {Singh , Karunesh Kumar and Agrawal, P. N.}, title = {\(L_p\)--Approximation by a {Linear} {Combination} of {Summation-integral} {Type} {Operators}}, journal = {Journal of nonlinear sciences and its applications}, pages = {218-235}, publisher = {mathdoc}, volume = {4}, number = {4}, year = {2011}, doi = {10.22436/jnsa.004.04.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.01/} }
TY - JOUR AU - Singh , Karunesh Kumar AU - Agrawal, P. N. TI - \(L_p\)--Approximation by a Linear Combination of Summation-integral Type Operators JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 218 EP - 235 VL - 4 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.01/ DO - 10.22436/jnsa.004.04.01 LA - en ID - JNSA_2011_4_4_a0 ER -
%0 Journal Article %A Singh , Karunesh Kumar %A Agrawal, P. N. %T \(L_p\)--Approximation by a Linear Combination of Summation-integral Type Operators %J Journal of nonlinear sciences and its applications %D 2011 %P 218-235 %V 4 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.01/ %R 10.22436/jnsa.004.04.01 %G en %F JNSA_2011_4_4_a0
Singh , Karunesh Kumar ; Agrawal, P. N. \(L_p\)--Approximation by a Linear Combination of Summation-integral Type Operators. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 218-235. doi : 10.22436/jnsa.004.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.01/
[1] On \(L_p\)− inverse theorem for a linear combination of Szász-beta operators, Thai J. Math. , Volume 9 (2011), pp. 11-20
[2] Une formule’d inversion de la transformee de Laplace: Applications a la Theorie des Moments , These de 3e cycle, Faculte des Science de l'Universite de Paris, 1967
[3] Sur’l approximation de functions integrable sur [0; 1] par des polynomes de Bernstein modifies, J. Approx. Theory , Volume 31 (1981), pp. 325-343
[4] A note on modified Baskakov type operators, Approx. Theory Appl., Volume 10 (3) (1994), pp. 74-78
[5] Approximation by Durrmeyer type operators, Ann. Polon. Math. LXIV , Volume 2 (1996), pp. 153-159
[6] Rate of convergence for the Baskakov-Durrmeyer type operators, Proc. London Math. Soc. , Volume 52 (1) (2001), pp. 69-77
[7] On the rate of convergence for certain summation-integral type operators, Math. Ineq. Appl. , Volume 9 (3) (2006), pp. 465-472
[8] Degree of approximation by a new sequence of linear operators, Kyungpook Math. J. , Volume 41(1) (2001), pp. 65-73
[9] Minimum moduli of ordinary differential operators, Proc. London Math. Soc., Volume 23 (1971), pp. 1-15
[10] Real and Abstract Analysis, Springer-Verlag, Berlin, Heidelberg, 1965
[11] Theory of the Integral, Dover Publications, Inc., New York, 1937
[12] Theory of Approximation of Functions of a Real Variable (English Translation), Dover Publications, Inc., New York, 1994
[13] Trigonometric Series, Dover, NewYork, 1955
Cité par Sources :