$L_p$--Approximation by a Linear Combination of Summation-integral Type Operators
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 218-235.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The present paper is a study of some direct results in $L_p$−approximation by a linear combination of summation-integral type operators. We obtain an error estimate in terms of the higher order modulus of smoothness using some properties of the Steklov mean.
DOI : 10.22436/jnsa.004.04.01
Classification : 41A25, 41A27, 41A36
Keywords: Linear positive operators, linear combination, Steklov means, integral modulus of smoothness.

Singh , Karunesh Kumar  1 ; Agrawal, P. N. 1

1 Department of Mathematics, I. I. T. Roorkee, Roorkee-247667, Uttarakhand, India
@article{JNSA_2011_4_4_a0,
     author = {Singh  , Karunesh Kumar  and Agrawal, P. N.},
     title = {\(L_p\)--Approximation by a {Linear} {Combination}  of {Summation-integral} {Type} {Operators}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {218-235},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {2011},
     doi = {10.22436/jnsa.004.04.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.01/}
}
TY  - JOUR
AU  - Singh  , Karunesh Kumar 
AU  - Agrawal, P. N.
TI  - \(L_p\)--Approximation by a Linear Combination  of Summation-integral Type Operators
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 218
EP  - 235
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.01/
DO  - 10.22436/jnsa.004.04.01
LA  - en
ID  - JNSA_2011_4_4_a0
ER  - 
%0 Journal Article
%A Singh  , Karunesh Kumar 
%A Agrawal, P. N.
%T \(L_p\)--Approximation by a Linear Combination  of Summation-integral Type Operators
%J Journal of nonlinear sciences and its applications
%D 2011
%P 218-235
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.01/
%R 10.22436/jnsa.004.04.01
%G en
%F JNSA_2011_4_4_a0
Singh  , Karunesh Kumar ; Agrawal, P. N. \(L_p\)--Approximation by a Linear Combination  of Summation-integral Type Operators. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 4, p. 218-235. doi : 10.22436/jnsa.004.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.04.01/

[1] Agrawal, P. N.; Gairola, A. R. On \(L_p\)− inverse theorem for a linear combination of Szász-beta operators, Thai J. Math. , Volume 9 (2011), pp. 11-20

[2] Durrmeyer, J. L. Une formule’d inversion de la transformee de Laplace: Applications a la Theorie des Moments , These de 3e cycle, Faculte des Science de l'Universite de Paris, 1967

[3] Derriennic, M. M. Sur’l approximation de functions integrable sur [0; 1] par des polynomes de Bernstein modifies, J. Approx. Theory , Volume 31 (1981), pp. 325-343

[4] Gupta, V. A note on modified Baskakov type operators, Approx. Theory Appl., Volume 10 (3) (1994), pp. 74-78

[5] Gupta, V.; Srivastava, G. S. Approximation by Durrmeyer type operators, Ann. Polon. Math. LXIV , Volume 2 (1996), pp. 153-159

[6] Gupta, V.; Gupta, P. Rate of convergence for the Baskakov-Durrmeyer type operators, Proc. London Math. Soc. , Volume 52 (1) (2001), pp. 69-77

[7] Gupta, V.; Mohapatra, R. On the rate of convergence for certain summation-integral type operators, Math. Ineq. Appl. , Volume 9 (3) (2006), pp. 465-472

[8] Agrawal, P. N.; Thamer, Kareem J. Degree of approximation by a new sequence of linear operators, Kyungpook Math. J. , Volume 41(1) (2001), pp. 65-73

[9] Goldberg, S.; Meir, A. Minimum moduli of ordinary differential operators, Proc. London Math. Soc., Volume 23 (1971), pp. 1-15

[10] Hewiit, E.; Stromberg, K. Real and Abstract Analysis, Springer-Verlag, Berlin, Heidelberg, 1965

[11] Saks, S. Theory of the Integral, Dover Publications, Inc., New York, 1937

[12] Timan, A. F. Theory of Approximation of Functions of a Real Variable (English Translation), Dover Publications, Inc., New York, 1994

[13] Zygmund, A. Trigonometric Series, Dover, NewYork, 1955

Cité par Sources :