Voir la notice de l'article provenant de la source International Scientific Research Publications
$( r(t) ( [x(t) + p(t)x[\tau (t)]]^\Delta)^\gamma )^\Delta +\int^b_a q(t; \xi)x^\gamma [g(t; \xi)]\Delta\xi= 0; t \in \mathbb{T}$ |
Li, Tongxing 1 ; Thandapani, Ethiraju 2
@article{JNSA_2011_4_3_a0, author = {Li, Tongxing and Thandapani, Ethiraju}, title = {Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments}, journal = {Journal of nonlinear sciences and its applications}, pages = {180-192}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {2011}, doi = {10.22436/jnsa.004.03.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.03.01/} }
TY - JOUR AU - Li, Tongxing AU - Thandapani, Ethiraju TI - Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 180 EP - 192 VL - 4 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.03.01/ DO - 10.22436/jnsa.004.03.01 LA - en ID - JNSA_2011_4_3_a0 ER -
%0 Journal Article %A Li, Tongxing %A Thandapani, Ethiraju %T Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments %J Journal of nonlinear sciences and its applications %D 2011 %P 180-192 %V 4 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.03.01/ %R 10.22436/jnsa.004.03.01 %G en %F JNSA_2011_4_3_a0
Li, Tongxing; Thandapani, Ethiraju. Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 3, p. 180-192. doi : 10.22436/jnsa.004.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.03.01/
[1] Dynamic equations on time scales: a survey, J. Comput. Appl. Math., Volume 141 (2002), pp. 1-26
[2] Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math. Anal. Appl., Volume 300 (2004), pp. 203-217
[3] Philos-type oscillation criteria of second-order half-linear dynamic equations on time scales, Rocky Mount. J. Math., Volume 37 (2007), pp. 1085-1104
[4] Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001
[5] Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003
[6] Oscillation of second-order Emden–Fowler neutral delay dynamic equations on time scales, Math. Comput. Modelling, Volume 51 (2010), pp. 1221-1229
[7] Asymptotic behavior and oscillation of solutions of third-order nonlinear neutral delay dynamic equations on time scales, Can. Appl. Math. Q., Volume 16 (2008), pp. 19-43
[8] Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal. Appl., Volume 333 (2007), pp. 505-522
[9] Oscillation criteria for nonlinear damped dynamic equations on time scales, Appl. Math. Comput, Volume 203 (2008), pp. 343-357
[10] On the oscillation of second-order neutral delay dynamic equations on time scales, Afri. Dia. J. Math., Volume 9 (2010), pp. 76-86
[11] Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl., Volume 345 (2008), pp. 176-185
[12] Analysis on measure chains–a unified approach to continuous and discrete calculus, Results Math, Volume 18 (1990), pp. 18-56
[13] Existence of nonoscillatory solutions to second-order neutral dynamic equations on time scales, Adv. Difference. Equ., Volume 2009 (2009), pp. 1-10
[14] Oscillation for neutral dynamic functional equations on time scales, J. Difference Equ. Appl., Volume 10 (2004), pp. 651-659
[15] Oscillation of second-order delay differential equations on time scales, Nonlinear Anal., Volume 63 (2005), pp. 1073-1080
[16] Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales, Adv. Difference. Equ., Volume 2006 (2006), pp. 1-9
[17] New oscillation criteria for second-order nonlinear dynamic equations on time scales, Nonlinear Fun. Anal. Appl., Volume 11 (2006), pp. 351-370
[18] Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math., Volume 187 (2006), pp. 123-141
[19] Oscillation criteria for a certain class of second-order neutral delay dynamic equations, Dynam. Cont. Discr. Impul. Syst. Ser B: Appl. Algorithms, Volume 16 (2009), pp. 433-452
[20] Oscillation criteria for second-order quasilinear neutral functional dynamic equations on time scales, Nonlinear Oscillations, Volume 13 (2010), pp. 379-399
[21] Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales, Applicable Anal., Volume 86 (2007), pp. 1-17
[22] New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution, Commun. Nonlinear Sci. Numer. Simulat, Volume 16 (2011), pp. 423-434
[23] New oscillation criteria for second-order neutral dynamic equations on time scales via Riccati technique, Hirosh. math. J., Volume 41 (2011), pp. 1-22
[24] Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales, Acta. Math. Sinica, Volume 24 (2008), pp. 1409-1432
[25] Oscillation criteria of second order neutral delay dynamic equations with distributed deviating arguments, Electronic J. Qual. Theo. Differential Equ., Volume 61 (2010), pp. 1-15
[26] Some oscillation results for second order nonlinear dynamic equations of neutral type, Nonlinear Anal., Volume 71 (2009), pp. 1727-1735
[27] Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Appl. Math. Comput., 178 (2006) 321–331. [28] S. Y. Zhang and Q. R. Wang. Oscillation of second-order nonlinear neutral dynamic equations on time scales, Appl. Math. Comput, Volume 216 (2010), pp. 2837-2847
[28] Existence of nonoscillatory solutions to neutral dynamic equations on time scales, J. Math. Anal. Appl., Volume 335 (2007), pp. 751-762
Cité par Sources :