Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 3, p. 180-192.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, some sufficient conditions for the oscillation of second-order nonlinear neutral functional dynamic equation
$( r(t) ( [x(t) + p(t)x[\tau (t)]]^\Delta)^\gamma )^\Delta +\int^b_a q(t; \xi)x^\gamma [g(t; \xi)]\Delta\xi= 0; t \in \mathbb{T}$
are established. An example is given to illustrate an application of our results.
DOI : 10.22436/jnsa.004.03.01
Classification : 34C10, 34K11
Keywords: Oscillation, Second-order nonlinear equation, Neutral dynamic equation, Distributed deviating arguments, Time scale.

Li, Tongxing 1 ; Thandapani, Ethiraju 2

1 School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China;School of mathematical Sciences, University of Jinan, Jinan, Shandong 250022, P. R. China
2 Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai 600 005, India
@article{JNSA_2011_4_3_a0,
     author = {Li, Tongxing and Thandapani, Ethiraju},
     title = {Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {180-192},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {2011},
     doi = {10.22436/jnsa.004.03.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.03.01/}
}
TY  - JOUR
AU  - Li, Tongxing
AU  - Thandapani, Ethiraju
TI  - Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 180
EP  - 192
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.03.01/
DO  - 10.22436/jnsa.004.03.01
LA  - en
ID  - JNSA_2011_4_3_a0
ER  - 
%0 Journal Article
%A Li, Tongxing
%A Thandapani, Ethiraju
%T Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments
%J Journal of nonlinear sciences and its applications
%D 2011
%P 180-192
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.03.01/
%R 10.22436/jnsa.004.03.01
%G en
%F JNSA_2011_4_3_a0
Li, Tongxing; Thandapani, Ethiraju. Oscillation of second-order quasi-linear neutral functional dynamic equations with distributed deviating arguments. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 3, p. 180-192. doi : 10.22436/jnsa.004.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.03.01/

[1] Agarwal, R. P.; Bohner, M.; O’Regan, D.; Peterson, A. Dynamic equations on time scales: a survey, J. Comput. Appl. Math., Volume 141 (2002), pp. 1-26

[2] Agarwal, R. P.; O’Regan, D.; Saker, S. H. Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. Math. Anal. Appl., Volume 300 (2004), pp. 203-217

[3] Agarwal, R. P.; O’Regan, D.; S. H. Saker Philos-type oscillation criteria of second-order half-linear dynamic equations on time scales, Rocky Mount. J. Math., Volume 37 (2007), pp. 1085-1104

[4] Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001

[5] Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003

[6] Chen, D. X. Oscillation of second-order Emden–Fowler neutral delay dynamic equations on time scales, Math. Comput. Modelling, Volume 51 (2010), pp. 1221-1229

[7] Chen, D. X.; Liu, J. C. Asymptotic behavior and oscillation of solutions of third-order nonlinear neutral delay dynamic equations on time scales, Can. Appl. Math. Q., Volume 16 (2008), pp. 19-43

[8] Erbe, L.; Peterson, A.; Saker, S. H. Oscillation criteria for second-order nonlinear delay dynamic equations, J. Math. Anal. Appl., Volume 333 (2007), pp. 505-522

[9] Erbe, L.; Hassan, T. S.; Peterson, A. Oscillation criteria for nonlinear damped dynamic equations on time scales, Appl. Math. Comput, Volume 203 (2008), pp. 343-357

[10] Han, Z.; Li, T.; Sun, S.; Zhang, C. On the oscillation of second-order neutral delay dynamic equations on time scales, Afri. Dia. J. Math., Volume 9 (2010), pp. 76-86

[11] T. S. Hassan Oscillation criteria for half-linear dynamic equations on time scales, J. Math. Anal. Appl., Volume 345 (2008), pp. 176-185

[12] Hilger, S. Analysis on measure chains–a unified approach to continuous and discrete calculus, Results Math, Volume 18 (1990), pp. 18-56

[13] Li, T.; Han, Z.; Sun, S.; Yang, D. Existence of nonoscillatory solutions to second-order neutral dynamic equations on time scales, Adv. Difference. Equ., Volume 2009 (2009), pp. 1-10

[14] Mathsen, R. M.; Wang, Q. R.; Wu, H. W. Oscillation for neutral dynamic functional equations on time scales, J. Difference Equ. Appl., Volume 10 (2004), pp. 651-659

[15] Şahiner, Y. Oscillation of second-order delay differential equations on time scales, Nonlinear Anal., Volume 63 (2005), pp. 1073-1080

[16] Şahiner, Y. Oscillation of second-order neutral delay and mixed-type dynamic equations on time scales, Adv. Difference. Equ., Volume 2006 (2006), pp. 1-9

[17] Saker, S. H. New oscillation criteria for second-order nonlinear dynamic equations on time scales, Nonlinear Fun. Anal. Appl., Volume 11 (2006), pp. 351-370

[18] Saker, S. H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales, J. Comput. Appl. Math., Volume 187 (2006), pp. 123-141

[19] Saker, S. H. Oscillation criteria for a certain class of second-order neutral delay dynamic equations, Dynam. Cont. Discr. Impul. Syst. Ser B: Appl. Algorithms, Volume 16 (2009), pp. 433-452

[20] Saker, S. H. Oscillation criteria for second-order quasilinear neutral functional dynamic equations on time scales, Nonlinear Oscillations, Volume 13 (2010), pp. 379-399

[21] Saker, S. H.; Agarwal, R. P.; O’Regan, D. Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales, Applicable Anal., Volume 86 (2007), pp. 1-17

[22] Saker, S. H.; O’Regan, D. New oscillation criteria for second-order neutral functional dynamic equations via the generalized Riccati substitution, Commun. Nonlinear Sci. Numer. Simulat, Volume 16 (2011), pp. 423-434

[23] Saker, S. H.; O’Regan, D. New oscillation criteria for second-order neutral dynamic equations on time scales via Riccati technique, Hirosh. math. J., Volume 41 (2011), pp. 1-22

[24] Saker, S. H.; O’Regan, D.; Agarwal, R. P. Oscillation theorems for second-order nonlinear neutral delay dynamic equations on time scales, Acta. Math. Sinica, Volume 24 (2008), pp. 1409-1432

[25] Thandapani, E.; Piramanantham, V. Oscillation criteria of second order neutral delay dynamic equations with distributed deviating arguments, Electronic J. Qual. Theo. Differential Equ., Volume 61 (2010), pp. 1-15

[26] A. K. Tripathy Some oscillation results for second order nonlinear dynamic equations of neutral type, Nonlinear Anal., Volume 71 (2009), pp. 1727-1735

[27] Wu, H. W.; Zhuang, R. K.; Mathsen, R. M. Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Appl. Math. Comput., 178 (2006) 321–331. [28] S. Y. Zhang and Q. R. Wang. Oscillation of second-order nonlinear neutral dynamic equations on time scales, Appl. Math. Comput, Volume 216 (2010), pp. 2837-2847

[28] Zhu, Z. Q.; Wang, Q. R. Existence of nonoscillatory solutions to neutral dynamic equations on time scales, J. Math. Anal. Appl., Volume 335 (2007), pp. 751-762

Cité par Sources :