ON A CERTAIN CLASS OF HARMONIC MULTIVALENT FUNCTIONS
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 170-179.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of the present paper is to study some results involving coefficient conditions, extreme points, distortion bounds, convolution conditions and convex combination for a new class of harmonic multivalent functions in the open unit disc. Relevant connections of the results presented here with various known results are briefly indicated.
DOI : 10.22436/jnsa.004.02.08
Classification : 30C45, 30C50, 30C55
Keywords: Harmonic, Univalent, Multivalent functions, Fractional calculus.

PORWAL, SAURABH 1 ; DIXIT, POONAM 2 ; KUMAR, VINOD 2

1 Department of Mathematics, Janta College, Bakewar, Etawah (U.P.)-206124, India
2 Department of Mathematics, Christ Church College, Kanpur (U.P.)-208001, India
@article{JNSA_2011_4_2_a7,
     author = {PORWAL, SAURABH and DIXIT, POONAM and KUMAR, VINOD},
     title = {ON {A} {CERTAIN} {CLASS} {OF} {HARMONIC} {MULTIVALENT} {FUNCTIONS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {170-179},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.22436/jnsa.004.02.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.08/}
}
TY  - JOUR
AU  - PORWAL, SAURABH
AU  - DIXIT, POONAM
AU  - KUMAR, VINOD
TI  - ON A CERTAIN CLASS OF HARMONIC MULTIVALENT FUNCTIONS
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 170
EP  - 179
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.08/
DO  - 10.22436/jnsa.004.02.08
LA  - en
ID  - JNSA_2011_4_2_a7
ER  - 
%0 Journal Article
%A PORWAL, SAURABH
%A DIXIT, POONAM
%A KUMAR, VINOD
%T ON A CERTAIN CLASS OF HARMONIC MULTIVALENT FUNCTIONS
%J Journal of nonlinear sciences and its applications
%D 2011
%P 170-179
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.08/
%R 10.22436/jnsa.004.02.08
%G en
%F JNSA_2011_4_2_a7
PORWAL, SAURABH; DIXIT, POONAM; KUMAR, VINOD. ON A CERTAIN CLASS OF HARMONIC MULTIVALENT FUNCTIONS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 170-179. doi : 10.22436/jnsa.004.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.08/

[1] Ahuja, O. P. Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math., Volume 6 (4) (2005), pp. 1-18

[2] Ahuja, O. P.; Aghalary, R.; Joshi, S. B. Harmonic univalent functions associated with k-Uniformly starlike functions, J. Math. Res. Sci., Volume 9 (1) (2005), pp. 9-17

[3] Ahuja, O. P.; Jahangiri, J. M. Multivalent harmonic starlike functions, Ann. Univ. Marie Curie-Sklodowska Sect. A, LV1 (2001), pp. 1-13

[4] Ahuja, O. P.; Jahangiri, J. M. Noshiro-type harmonic univalent functions, Sci. Math. Japon., Volume 6 (2) (2002), pp. 253-259

[5] Aouf, M. K. A generalization of multivalent functions with negative coefficients II, Bull. Korean. Math. Soc., Volume 25 (2) (1998), pp. 221-232

[6] Avci, Y.; Zlotkiewicz, E. On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska Sect., Volume 44 (1990), pp. 1-7

[7] Clunie, J.; Sheil-Small, T. Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser.AI Math, Volume 9 (1984), pp. 3-25

[8] Dixit, K. K.; Pathak, A. L.; Porwal, S.; Agarwal, R. A new subclass of harmonic univalent functions defined by Salagean operator , Int. J. Contemp. Math. Sci., Volume 4 (8) (2009), pp. 371-383

[9] Dixit, K. K.; Pathak, A. L.; Tripathi, R. A new subclass of Goodman-RØnning type harmonic multivalent functions, Proc. Int. Sym. GFTA Malaysia (2008), pp. 79-94

[10] Dixit, K. K.; Porwal, Saurabh An application of fractional calculus to harmonic univalent functions, Bull. Cal. Math. Soc., Volume 102(4) (2010), pp. 343-352

[11] P. Duren Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, Vol.156, Cambridge University Press, Cambridge, 2004

[12] Jahangiri, J. M. Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., Volume 235 (1999), pp. 470-477

[13] Jahangiri, J. M.; Murugusundaramoorthy, G.; Vijaya, K. Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math., Volume 2 (2002), pp. 77-82

[14] Kanas, S.; Srivastava, H. M. Linear operators associated with k-Uniformly convex functions, Integral Transform Spec. Funct., Volume 9 (2) ( 2000), pp. 121-132

[15] Kim, Y. C.; Jahangiri, J. M.; Choi, J. H. Certain convex harmonic functions, Int. J. Math. Math. Sci., Volume 29 (8) (2002), pp. 459-465

[16] Kumar, V. Saurabh Porwal and Poonam Dixit, A New Subclass of Harmonic Univalent Functions Defined by Fractional Calculus, Ind. J. Math., 52(3), 2010

[17] S. Owa On the distortion theorem I, Kyungpook Math. J., Volume 18 (1978), pp. 53-59

[18] Rosy, T.; Stephen, B. A.; Subramanian, K. G.; Jahangiri, J. M. Goodman-Ronning-type harmonic univalent functions, Kyungpook Math. J., Volume 41 (1) (2001), pp. 45-54

[19] Salagean, G. S. Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, Volume 1 (1983), pp. 362-372

[20] Seker, Bilal; Eker, Sevtap Sümer On Salagean-type harmonic multivalent functions, General Mathematics, Volume 15(2-3) (2007), pp. 52-63

[21] Silverman, H. Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., Volume 220 (1998), pp. 283-289

[22] Silverman, H.; Silvia, E. M. Subclasses of Harmonic univalent functions, New Zealand J. Math., Volume 28 (1999), pp. 275-284

[23] Srivastava, H. M.; Owa, S. An application of the fractional derivative, Math. Japon., Volume 29 (1984), pp. 383-389

[24] Yalcin, Sibel A new class of Salagean-type harmonic univalent functions, Appl. Math. Lett., Volume 18 (2005), pp. 191-198

[25] Yalcin, S.; Öztürk, M.; Yamankaradeniz, M. On the subclass of Salagean-type harmonic univalent functions, J. Inequl. Pure Appl. Math., Volume 8 (2) (2007), pp. 1-17

Cité par Sources :