Voir la notice de l'article provenant de la source International Scientific Research Publications
PORWAL, SAURABH 1 ; DIXIT, POONAM 2 ; KUMAR, VINOD 2
@article{JNSA_2011_4_2_a7, author = {PORWAL, SAURABH and DIXIT, POONAM and KUMAR, VINOD}, title = {ON {A} {CERTAIN} {CLASS} {OF} {HARMONIC} {MULTIVALENT} {FUNCTIONS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {170-179}, publisher = {mathdoc}, volume = {4}, number = {2}, year = {2011}, doi = {10.22436/jnsa.004.02.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.08/} }
TY - JOUR AU - PORWAL, SAURABH AU - DIXIT, POONAM AU - KUMAR, VINOD TI - ON A CERTAIN CLASS OF HARMONIC MULTIVALENT FUNCTIONS JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 170 EP - 179 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.08/ DO - 10.22436/jnsa.004.02.08 LA - en ID - JNSA_2011_4_2_a7 ER -
%0 Journal Article %A PORWAL, SAURABH %A DIXIT, POONAM %A KUMAR, VINOD %T ON A CERTAIN CLASS OF HARMONIC MULTIVALENT FUNCTIONS %J Journal of nonlinear sciences and its applications %D 2011 %P 170-179 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.08/ %R 10.22436/jnsa.004.02.08 %G en %F JNSA_2011_4_2_a7
PORWAL, SAURABH; DIXIT, POONAM; KUMAR, VINOD. ON A CERTAIN CLASS OF HARMONIC MULTIVALENT FUNCTIONS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 170-179. doi : 10.22436/jnsa.004.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.08/
[1] Planar harmonic univalent and related mappings, J. Inequal. Pure Appl. Math., Volume 6 (4) (2005), pp. 1-18
[2] Harmonic univalent functions associated with k-Uniformly starlike functions, J. Math. Res. Sci., Volume 9 (1) (2005), pp. 9-17
[3] Multivalent harmonic starlike functions, Ann. Univ. Marie Curie-Sklodowska Sect. A, LV1 (2001), pp. 1-13
[4] Noshiro-type harmonic univalent functions, Sci. Math. Japon., Volume 6 (2) (2002), pp. 253-259
[5] A generalization of multivalent functions with negative coefficients II, Bull. Korean. Math. Soc., Volume 25 (2) (1998), pp. 221-232
[6] On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska Sect., Volume 44 (1990), pp. 1-7
[7] Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser.AI Math, Volume 9 (1984), pp. 3-25
[8] A new subclass of harmonic univalent functions defined by Salagean operator , Int. J. Contemp. Math. Sci., Volume 4 (8) (2009), pp. 371-383
[9] A new subclass of Goodman-RØnning type harmonic multivalent functions, Proc. Int. Sym. GFTA Malaysia (2008), pp. 79-94
[10] An application of fractional calculus to harmonic univalent functions, Bull. Cal. Math. Soc., Volume 102(4) (2010), pp. 343-352
[11] Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, Vol.156, Cambridge University Press, Cambridge, 2004
[12] Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., Volume 235 (1999), pp. 470-477
[13] Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math., Volume 2 (2002), pp. 77-82
[14] Linear operators associated with k-Uniformly convex functions, Integral Transform Spec. Funct., Volume 9 (2) ( 2000), pp. 121-132
[15] Certain convex harmonic functions, Int. J. Math. Math. Sci., Volume 29 (8) (2002), pp. 459-465
[16] Saurabh Porwal and Poonam Dixit, A New Subclass of Harmonic Univalent Functions Defined by Fractional Calculus, Ind. J. Math., 52(3), 2010
[17] On the distortion theorem I, Kyungpook Math. J., Volume 18 (1978), pp. 53-59
[18] Goodman-Ronning-type harmonic univalent functions, Kyungpook Math. J., Volume 41 (1) (2001), pp. 45-54
[19] Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, Volume 1 (1983), pp. 362-372
[20] On Salagean-type harmonic multivalent functions, General Mathematics, Volume 15(2-3) (2007), pp. 52-63
[21] Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., Volume 220 (1998), pp. 283-289
[22] Subclasses of Harmonic univalent functions, New Zealand J. Math., Volume 28 (1999), pp. 275-284
[23] An application of the fractional derivative, Math. Japon., Volume 29 (1984), pp. 383-389
[24] A new class of Salagean-type harmonic univalent functions, Appl. Math. Lett., Volume 18 (2005), pp. 191-198
[25] On the subclass of Salagean-type harmonic univalent functions, J. Inequl. Pure Appl. Math., Volume 8 (2) (2007), pp. 1-17
Cité par Sources :