CONTROLLABILITY OF IMPULSIVE QUASI-LINEAR FRACTIONAL MIXED VOLTERRA-FREDHOLM-TYPE INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 152-169.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we establish a sufficient condition for the controllability of impulsive quasi-linear fractional mixed Volterra-Fredholm-type integrodifferential equations in Banach spaces. The results are obtained by using Banach contraction fixed point theorem combined with the fractional calculus theory.
DOI : 10.22436/jnsa.004.02.07
Classification : 34G20, 34G60, 34A37
Keywords: controllability, quasi-linear differential equation, fractional calculus, nonlocal condition, integrodifferential equation, evolution equation, fixed point.

KAVITHA, V. 1 ; ARJUNAN, M. MALLIKA 1

1 Department of Mathematics, Karunya University, Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
@article{JNSA_2011_4_2_a6,
     author = {KAVITHA, V. and ARJUNAN, M. MALLIKA},
     title = {CONTROLLABILITY {OF} {IMPULSIVE} {QUASI-LINEAR} {FRACTIONAL} {MIXED} {VOLTERRA-FREDHOLM-TYPE} {INTEGRODIFFERENTIAL} {EQUATIONS} {IN} {BANACH} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {152-169},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.22436/jnsa.004.02.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.07/}
}
TY  - JOUR
AU  - KAVITHA, V.
AU  - ARJUNAN, M. MALLIKA
TI  - CONTROLLABILITY OF IMPULSIVE QUASI-LINEAR FRACTIONAL MIXED VOLTERRA-FREDHOLM-TYPE INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 152
EP  - 169
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.07/
DO  - 10.22436/jnsa.004.02.07
LA  - en
ID  - JNSA_2011_4_2_a6
ER  - 
%0 Journal Article
%A KAVITHA, V.
%A ARJUNAN, M. MALLIKA
%T CONTROLLABILITY OF IMPULSIVE QUASI-LINEAR FRACTIONAL MIXED VOLTERRA-FREDHOLM-TYPE INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES
%J Journal of nonlinear sciences and its applications
%D 2011
%P 152-169
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.07/
%R 10.22436/jnsa.004.02.07
%G en
%F JNSA_2011_4_2_a6
KAVITHA, V.; ARJUNAN, M. MALLIKA. CONTROLLABILITY OF IMPULSIVE QUASI-LINEAR FRACTIONAL MIXED VOLTERRA-FREDHOLM-TYPE INTEGRODIFFERENTIAL EQUATIONS IN BANACH SPACES. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 152-169. doi : 10.22436/jnsa.004.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.07/

[1] Agarwal, R. P.; Benchohra, M.; Slimani, B. A. Existence results for differential equations with fractional order impulses, Memoirs on Differential Equations and Mathematical Physics, Volume 44 (2008), pp. 1-21

[2] Agarwal, R. P.; Belmekki, M.; Benchohra, M. A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Advances in Difference Equations, Article ID 981728, Volume 2009 (2009), pp. 1-47

[3] Agarwal, R. P.; Benchohra, M.; Hamani, S. A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions , Acta Appl. Math., Volume 109(3) (2010), pp. 973-1033

[4] Agarwal, R. P.; Zhou, Y.; He, Y. Existence of fractional neutral functional differential equations, Comp. Math. Appl., Volume 59 (2010), pp. 1095-1100

[5] Ahmad, B.; Sivasundaram, S. Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Analysis: Hybrid Systems, Volume 3(3) (2009), pp. 251-258

[6] Ahmad, B.; Nieto, J. J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comp. Math. Appl, Volume 58 (2009), pp. 1838-1843

[7] Ahmad, B.; Nieto, J. J. Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Article ID 708576., Volume 2009 (2009), pp. 1-11

[8] Amann, H. Quasilinear evolution equations and parabolic systems, Trans. Amer. Math. Soc., Volume 29 (1986), pp. 191-227

[9] Bahuguna, D. Quasilinear integrodifferential equations in Banach spaces, Nonlinear Anal., Volume 24 (1995), pp. 175-183

[10] Bai, Z.; Lü, H. Positive solutions for boundary value problem of nonlinear fractional differential equations, J. Math. Anal. Appl., Volume 311 (2005), pp. 495-505

[11] Balachandran, K.; Uchiyama, K. Existence of solutions of quasilinear integrodifferential equations with nonlocal condition, Tokyo. J. Math., Volume 23 (2000), pp. 203-210

[12] Balachandran, K.; F. P. Samuel Existence of solutions for quasilinear delay integrodifferential equations with nonlocal conditions, Electronic Journal of Differential Equations, Volume 2009 (2009), pp. 1-7

[13] Balachandran, K.; Samuel, F. P. Existence of mild solutions for quasilinear integrodifferential equations with impulsive conditions, Electronic Journal of Differential Equations, Volume 2009(84) (2009), pp. 1-9

[14] Balachandran, K.; Park, J. Y.; Park, S. H. Controllability of nonlocal impulsive quasi- linear integrodifferential systems in Banach spaces, Reports on Mathematical Physics, Volume 65(2) (2010), pp. 247-257

[15] Balachandran, K.; Dauer, J. P. Controllability of nonlinear systems in Banach spaces: a survey, J. Optim. Theory Appl., Volume 115 (2002), pp. 7-28

[16] Balachandran, K.; Kim, J. H. Remarks on the paper ''Controllability of second order differential inclusion in Banach spaces[J. Math. Anal. Appl. 285, 537-550 (2003)]. , J. Math. Anal. Appl., Volume 324 (2006), pp. 746-749

[17] Balachandran, K.; Park, J. Y. Controllability of fractional integrodifferential systems in Banach spaces, Nonlinear Analysis: Hybrid Systems, Volume 3(4) (2009), pp. 363-367

[18] Balachandran, K.; Kiruthika, S. Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electronic Journal of Qualitative Theory of Differential Equations, Volume 2010(4) (2010), pp. 1-12

[19] Balachandran, K.; Kiruthika, S.; Trujillo, J. J. Existence results for fractional impulsive integrodifferential equations in Banach spaces, Commun Nonlinear Sci Numer Simulat, doi:10.1016/j.cnsns.2010.08.005., 2010

[20] Benchohra, M.; B. A. Slimani Existence and uniqueness of solutions to impulsive fractional differential equations, Electronic Journal of Differential Equations, Volume 2009(10) (2009), pp. 1-11

[21] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A. Existence results for fractional functional differential inclusions with infinite delay and application to control theory, Fract. Calc. Appl. Anal., Volume 11 (2008), pp. 35-56

[22] Benchohra, M.; Henderson, J.; Ntouyas, S. K. Existence results for impulsive multivalued semilinear neutral functional inclusions in Banach spaces, J. Math. Anal. Appl., Volume 263 (2001), pp. 763-780

[23] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A. Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., Volume 338 (2008), pp. 1340-1350

[24] Benchohra, M.; Ouahab, A. Controllability results for functional semilinear differential inclusions in Fréchet spaces, Nonlinear Anal., Volume 61 (2005), pp. 405-423

[25] Bonila, B.; Rivero, M.; Rodriquez-Germa, L.; Trujilio, J. J. Fractional differential equations as alternative models to nonlinear differential equations, Appl. Math. Comput., Volume 187 (2007), pp. 79-88

[26] L. Byszewski Theorems about existence and uniqueness of solutions of solutions of a semi- linear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., Volume 162 (1991), pp. 494-505

[27] Byszewski, L.; Lakshmikantham, V. Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., Volume 40 (1991), pp. 11-19

[28] Chandrasekaran, M. Nonlocal Cauchy problem for quasilinear integrodifferential equations in Banach spaces, Electronic Journal of Differential Equations, Volume 2007(33) (2007), pp. 1-6

[29] Chang, Y. K.; Nieto, J. J. Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling, Volume 49 (2009), pp. 605-609

[30] Chang, Y.-K.; Chalishajar, D. N. Controllability of mixed Volterra Fredholm type integrodifferential inclusions in Banach spaces, Journal of the Franklin Institute, Volume 345(5) (2008), pp. 499-507

[31] Chang, Y.-K.; Anguraj, A.; Arjunan, M. Mallika Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Analysis: Hybrid Systems, Volume 2 (2008), pp. 209-218

[32] Chang, Y. K.; Nieto, J. J.; W. S. Li Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, J. Optim. Theory Appl., Volume 142 (2009), pp. 267-273

[33] Chen, Y. Q.; Ahu, H. S.; Xue, D. Robust controllability of interval fractional order linear time invariant systems , Signal Processing, Volume 86 (2006), pp. 2794-2802

[34] Dhakne, M. B.; Pachpatte, B. G. On a quasilinear functional integrodifferential equations in a Banach space, Indian J. Pure Appl. Math., Volume 25 (1994), pp. 275-287

[35] Dong, Q.; Li, G.; Zhang, J. Quasilinear nonlocal integrodifferential equations in Banach spaces, Electronic Journal of Differential Equations, Volume 2008(19) (2008), pp. 1-8

[36] N'Guérékata, G. M. A Cauchy problem for some fractional abstract differential equations with non local conditions, Nonlinear Analysis, Volume 70(5) (2009), pp. 1873-1876

[37] J. H. He Some applications of nonlinear fractional differential equations and their approximations, Bull. Sci. Technol., Volume 15(2) (1999), pp. 86-90

[38] Hernandez, E.; O'Regan, Donal; Balachandran, K. On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear Analysis: Theory, Methods and Applications, Volume 73(15) (2010), pp. 3462-3471

[39] Hernandez, E. A second order impulsive Cauchy problem, Int. J. Math. Math. Sci., Volume 31(8) (2002), pp. 451-461

[40] Hernandez, E.; H. R. Henriquez Impulsive partial neutral differential equations, Appl. Math. Lett., Volume 19 (2006), pp. 215-222

[41] Jumarie, G. An approach via fractional analysis to non-linearity induced by coarse-graining in space, Nonlinear Anal. RWA, Volume 11 (2010), pp. 535-546

[42] Kato, S. Nonhomogeneous quasilinear evolution equations in Banach spaces, Nonlinear Anal., Volume 9 (1985), pp. 1061-1071

[43] Kilbas, A. A.; Srivastava, Hari M.; Trujillo, Juan J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., , Amsterdam, 2006

[44] Kosmatov, N. Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Analysis, Volume 70 (2009), pp. 2521-2529

[45] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, World Scientific, NJ, 1989

[46] Lakshmikantham, V. Theory of fractional functional differential equation, Nonlinear Anal., Volume 69 (2008), pp. 3337-3343

[47] Lakshmikantham, V.; Devi, J. V. Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., Volume 1(1) (2008), pp. 38-45

[48] Lakshmikantham, V.; Vatsala, A. S. Basic theory of fractional differential equations, Nonlinear Anal., Volume 69 (2008), pp. 2677-2682

[49] Lakshmikantham, V.; Vatsala, A. S. General uniqueness and monotone iteration technique in fractional differential equations, Appl. Math. Lett., Volume 21 (2008), pp. 828-834

[50] Liu, J. H. Nonlinear impulsive evolution equations, Dyn. Contin. Discrete Impuls. Syst., Volume 6(1) (1999), pp. 77-85

[51] Luchko, Y. F.; Rivero, M.; Trujillo, J. J.; Velasco, M. P. Fractional models, nonlocality and complex systems , Comp. Math. Appl., Volume 59 (2010), pp. 1048-1056

[52] F. Mainardi Fractional Calculus, Some Basic Problems in Continuum and Statistical Mechanics, in A. Carpinteri, F. Mainardi (Eds)., Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York (1997), pp. 291-348

[53] Miller, K. S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993

[54] Mophou, G. M.; N'Guérékata, G. M. Existence of mild solution for some fractional differential equations with nonlocal condition, Semigroup Forum, Volume 79 (2009), pp. 315-322

[55] Mophou, G. M.; N'Guérékata, G. M. On integral solutions of some nonlocal fractional differential equations with nondense domain, Nonlinear Analysis, Volume 71 (2009), pp. 4668-4675

[56] Mophou, G. M.; N'Guérékata, G. M. Mild solutions for semilinear fractional differential equations, Electronic Journal of Differential Equations, Volume 2009(21) (2009), pp. 1-9

[57] Mophou, G. M. Existence and uniqueness of mild solutions to impulsive fractional differential equations , Nonlinear Analysis, Volume 72 (2010), pp. 1604-1615

[58] Podlubny, I. Fractional Differential Equations, Academic Press, New York, 1999

[59] Oka, H. Abstract quasilinear Volterra integrodifferential equations, Nonlinear Anal., Volume 28 (1997), pp. 1019-1045

[60] Oka, H.; Tanaka, N. Abstract quasilinear integrodifferential equtions of hyperbolic type, Nonlinear Anal., Volume 29 (1997), pp. 903-925

[61] Rogovchenko, Y. V. Nonlinear impulsive evolution systems and applications to population models, J. Math. Anal. Appl., Volume 207(2) (1997), pp. 300-315

[62] Sanekata, N. Abstract quasilinear equations of evolution in nonreflexive Banach spaces, Hiroshima Mathematical Journal, Volume 19 (1989), pp. 109-139

[63] Shamardan, A. B.; Moubarak, M. R. A. Controllability and observability for fractional control systems, Journal of Fractional Calculus, Volume 15 (1999), pp. 25-34

[64] Tai, Z.; Wang, X. Controllability of fractional-order impulsive neutral functional infinite delay integrodifferential systems in Banach spaces, Applied Mathematics Letters, Volume 22(11) (2009), pp. 1760-1765

[65] Zhang, S. Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives, Nonlinear Anal., Volume 71 (2009), pp. 2087-2093

[66] Zhong, Y.; Feng, J.; Li, J. Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal., Volume 71 (2009), pp. 3249-3256

Cité par Sources :