EXISTENCE RESULTS FOR IMPULSIVE SYSTEMS WITH NONLOCAL CONDITIONS IN BANACH SPACES
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 138-151.

Voir la notice de l'article provenant de la source International Scientific Research Publications

According to semigroup theories and Sadovskii fixed point theorem, this paper is mainly concerned with the existence of solutions for an impulsive neutral differential and integrodifferential systems with nonlocal conditions in Banach spaces. As an application of this main theorem, a practical consequence is derived for the sub-linear growth case. In the end, an example is also given to show the application of our result.
DOI : 10.22436/jnsa.004.02.06
Classification : 34A37
Keywords: Nonlocal condition, Impulsive differential equation, Sadovskii fixed point theorem

KAVITHA, V. 1 ; ARJUNAN, M. MALLIKA 2 ; RAVICHANDRAN, C. 3

1 Department of Mathematics, Karunya University, , , Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
2 Department of Mathematics, Karunya University, Karunya Nagar, Coimbatore-641 114, Tamil Nadu, India
3 Department of Mathematics, Karunya University, Karunya Nagar, Coimbatore- 641 114, Tamil Nadu, India
@article{JNSA_2011_4_2_a5,
     author = {KAVITHA, V. and ARJUNAN, M. MALLIKA and RAVICHANDRAN, C.},
     title = {EXISTENCE {RESULTS} {FOR} {IMPULSIVE} {SYSTEMS} {WITH} {NONLOCAL} {CONDITIONS} {IN} {BANACH} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {138-151},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.22436/jnsa.004.02.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.06/}
}
TY  - JOUR
AU  - KAVITHA, V.
AU  - ARJUNAN, M. MALLIKA
AU  - RAVICHANDRAN, C.
TI  - EXISTENCE RESULTS FOR IMPULSIVE SYSTEMS WITH NONLOCAL CONDITIONS IN BANACH SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 138
EP  - 151
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.06/
DO  - 10.22436/jnsa.004.02.06
LA  - en
ID  - JNSA_2011_4_2_a5
ER  - 
%0 Journal Article
%A KAVITHA, V.
%A ARJUNAN, M. MALLIKA
%A RAVICHANDRAN, C.
%T EXISTENCE RESULTS FOR IMPULSIVE SYSTEMS WITH NONLOCAL CONDITIONS IN BANACH SPACES
%J Journal of nonlinear sciences and its applications
%D 2011
%P 138-151
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.06/
%R 10.22436/jnsa.004.02.06
%G en
%F JNSA_2011_4_2_a5
KAVITHA, V.; ARJUNAN, M. MALLIKA; RAVICHANDRAN, C. EXISTENCE RESULTS FOR IMPULSIVE SYSTEMS WITH NONLOCAL CONDITIONS IN BANACH SPACES. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 138-151. doi : 10.22436/jnsa.004.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.06/

[1] Akca, H.; Boucherif, A.; V. Covachev Impulsive functional differential equations with nonlocal conditions, Inter. J. Math. Math. Sci., Volume 29(5) (2002), pp. 251-256

[2] Anguraj, A.; Karthikeyan, K. Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions, Nonlinear Anal., Volume 70(7) (2009), pp. 2717-2721

[3] Byszewski, L. Theorems about the existence and uniqueness of a solution of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., Volume 162 (1991), pp. 496-505

[4] Byszewski, L.; Lakshmikantham, V. Theorems about existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., Volume 40 (1990), pp. 11-19

[5] Chang, Y.-K.; Kavitha, V.; Arjunan, M. Mallika Existence results for impulsive neutral differential and integrodifferential equations with nonlocal conditions via fractional operators, Nonlinear Analysis: Hybrid Systems, Volume 4 (2010), pp. 32-43

[6] Chang, Y.-K.; Anguraj, A.; Arjunan, M. Mallika Existence results for non-densely defined neutral impulsive differential inclusions with nonlocal conditions, J. Appl. Math. Comput., Volume 28(1) (2008), pp. 79-91

[7] Deimling, K. Multivalued Differential Equations, de Gruyter, Berlin, 1992

[8] Deng, K. Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., Volume 179 (1993), pp. 630-637

[9] Ezzinbi, K.; Fu, X.; Hilal, K. Existence and regularity in the \(\alpha\)-norm for some neutral partial differential equations with nonlocal conditions, Nonlinear Anal., Volume 67 (2007), pp. 1613-1622

[10] Fu, X.; Ezzinbi, K. Existence of solutions for neutral functional differential evolutions equations with nonlocal conditions, Nonlinear Anal., Volume 54 (2003), pp. 215-227

[11] Hernández, E.; Henriquez, H. R. Impulsive partial neutral differential equations, Appl. Math. Lett., Volume 19 (3) (2006), pp. 215-222

[12] Hernández, E.; Henriquez, H. R.; Marco, R. Existence of solutions for a class of impulsive partial neutral functional differential equations, J. Math. Anal. Appl., Volume 331 (2) (2007), pp. 1135-1158

[13] Hu, S.; Papageorgiou, N. Handbook of Multivalued Analysis, Volume 1: Theory, Kluwer, Dordrecht, Boston, London, 1997

[14] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989

[15] Liu, J. H. Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Systems, Volume 6 (1) (1999), pp. 77-85

[16] Pazy, A. Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, Newyork, 1983

[17] Rogovchenko, Y. V. Impulsive evolution systems: main results and new trends, Dynam. Contin. Discrete Impuls. Systems, Volume 3 (1) (1997), pp. 57-88

[18] Rogovchenko, Y. V. Nonlinear impulse evolution systems and applications to population models, J. Math. Anal. Appl., Volume 207 (2) (1997), pp. 300-315

[19] B. N. Sadovskii On a fixed point principle, Functional Analysis and Applications, Volume 1(2) (1967), pp. 74-76

[20] Samoilenko, A. M.; Perestyuk, N. A. Impulsive Differential Equations, World Scientific, Singapore, 1995

[21] kavitha, V.; Arjunan, M. Mallika Controllability of non-densely defined impulsive neutral functional differential systems with infinite delay in Banach spaces, Nonlinear Analysis: Hybrid Systems, Volume 4(3) (2010), pp. 441-450

Cité par Sources :