A NEW REGULARITY CRITERION FOR THE NAVIER-STOKES EQUATIONS
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 126-129.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We study the incompressible Navier-Stokes equations in the entire three-dimensional space. We prove that if $\partial_3u_3 \in L^{s_1}_ t L^{r_1}_x$ and $u_1u_2 \in L^{s_2}_ t L^{r_2}_x$, then the solution is regular. Here $\frac{2}{s_1}+\frac{3}{r_1}\leq 1, 3\leq r_1\leq\infty,\frac{2}{s_2}+\frac{3}{r_2}\leq1$ and $3\leq r_2\leq\infty$.
DOI : 10.22436/jnsa.004.02.04
Classification : 35Q30, 76D03
Keywords: Navier-Stokes equations, Leray-Hopf weak solution, Regularity.

YUE, HU 1 ; LI, WU-MING 1

1 School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, Henan 454000, China
@article{JNSA_2011_4_2_a3,
     author = {YUE, HU and LI, WU-MING},
     title = {A {NEW} {REGULARITY} {CRITERION} {FOR} {THE} {NAVIER-STOKES} {EQUATIONS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {126-129},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.22436/jnsa.004.02.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.04/}
}
TY  - JOUR
AU  - YUE, HU
AU  - LI, WU-MING
TI  - A NEW REGULARITY CRITERION FOR THE NAVIER-STOKES EQUATIONS
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 126
EP  - 129
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.04/
DO  - 10.22436/jnsa.004.02.04
LA  - en
ID  - JNSA_2011_4_2_a3
ER  - 
%0 Journal Article
%A YUE, HU
%A LI, WU-MING
%T A NEW REGULARITY CRITERION FOR THE NAVIER-STOKES EQUATIONS
%J Journal of nonlinear sciences and its applications
%D 2011
%P 126-129
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.04/
%R 10.22436/jnsa.004.02.04
%G en
%F JNSA_2011_4_2_a3
YUE, HU; LI, WU-MING. A NEW REGULARITY CRITERION FOR THE NAVIER-STOKES EQUATIONS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 126-129. doi : 10.22436/jnsa.004.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.04/

[1] J. Leray Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. , Volume 63 (1934), pp. 193-248

[2] Chae, D.; Lee, J. Regularity criterion in terms of pressure for the Navier-Stokes equations, Nonlinear Anal.TMA , Volume 46 (2001), pp. 727-735

[3] Kukavica, I.; Ziane, M. Navier-Stokes equations with regularity in one direction, J. Math. Phys. 48, Art. ID 065203., 2007

[4] Serrin, J. On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal. , Volume 9 (1962), pp. 187-195

[5] Escauriaza, L.; Seregin, G.; Sverk, V. On backward uniqueness for parabolic equations, Zap. Nauch. Seminarov POMI , Volume 288 (2002), pp. 100-103

Cité par Sources :