CONDITIONING OF THREE-POINT BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FIRST ORDER MATRIX LYAPUNOV SYSTEMS
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 115-125.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper deals with the study of conditioning for three-point boundary value problems associated with first order matrix Lyapunov systems, with the help of Kronecker product of matrices. Further, we obtain the close relationship between the stability bounds of the problem on one hand , and the growth behavior of the fundamental matrix solution on the other hand.
DOI : 10.22436/jnsa.004.02.03
Classification : 34B27, 34C10, 65F35, 65L07
Keywords: Lyapunov system, boundary value problem, Kronecker product, condition number.

MURTY, M. S. N. 1 ; ANJANEYULU, D. 1 ; KUMAR, G. SURESH 2

1 Department of Applied Mathematics, Achrya Nagarjuna University-Nuzvid Campus, Nuzvid-521 201, Andra Prdesh, India
2 Department of Mathematics (FED-II), K L University, Vaddeswaram-522 502, Guntur, Andra Prdesh, India
@article{JNSA_2011_4_2_a2,
     author = {MURTY, M. S. N. and ANJANEYULU, D. and KUMAR, G. SURESH},
     title = {CONDITIONING {OF} {THREE-POINT} {BOUNDARY} {VALUE} {PROBLEMS} {ASSOCIATED} {WITH} {FIRST} {ORDER} {MATRIX} {LYAPUNOV} {SYSTEMS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {115-125},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.22436/jnsa.004.02.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.03/}
}
TY  - JOUR
AU  - MURTY, M. S. N.
AU  - ANJANEYULU, D.
AU  - KUMAR, G. SURESH
TI  - CONDITIONING OF THREE-POINT BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FIRST ORDER MATRIX LYAPUNOV SYSTEMS
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 115
EP  - 125
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.03/
DO  - 10.22436/jnsa.004.02.03
LA  - en
ID  - JNSA_2011_4_2_a2
ER  - 
%0 Journal Article
%A MURTY, M. S. N.
%A ANJANEYULU, D.
%A KUMAR, G. SURESH
%T CONDITIONING OF THREE-POINT BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FIRST ORDER MATRIX LYAPUNOV SYSTEMS
%J Journal of nonlinear sciences and its applications
%D 2011
%P 115-125
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.03/
%R 10.22436/jnsa.004.02.03
%G en
%F JNSA_2011_4_2_a2
MURTY, M. S. N.; ANJANEYULU, D.; KUMAR, G. SURESH. CONDITIONING OF THREE-POINT BOUNDARY VALUE PROBLEMS ASSOCIATED WITH FIRST ORDER MATRIX LYAPUNOV SYSTEMS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 115-125. doi : 10.22436/jnsa.004.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.03/

[1] Hoog, F. R. De; Mattheije, R. M. M. On dichotomy and well conditioning in boundary value problem, SIAM J. Numer. Anal., Volume 24 (1987), pp. 89-105

[2] Graham, A. Kronecker Products and Matrix Calculus, With Applications, Ellis Horwood Ltd., England, 1981

[3] Murty, K. N.; P. V. S. Lakshmi On dichotomy and well-conditioning in two-point boundary value problems, Applied Mathematics and Computations , Volume 38 (1990), pp. 179-199

[4] Murty, M. S. N.; Rao, B. V. Appa On conditioning for three-point boundary value problems, Indian Journal of Mathematics , Volume 45 (2003), pp. 211-221

[5] Murty, M. S. N.; Rao, B. V. Appa On two point boundary value problems for :X = AX + XB, J. Ultra Scientist of Physical Sciences , Volume 16 (2004), pp. 223-227

[6] Murty, M. S. N.; Rao, B. V. Appa; Kumar, G. Suresh Controllability, observability and realizability of matrix Lyapunov systems, Bull. Korean. Math. Soc. , Volume 43 (2006), pp. 149-159

[7] Murty, M. S. N.; Kumar, G. Suresh On dichotomy and conditioning for two-point boundary value problems associated with first order matrix Lyapunov systems, J. Korean Math. Soc. , Volume 45 (2008), pp. 1361-1378

Cité par Sources :