EXISTENCE OF GLOBAL SOLUTIONS FOR IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 102-114.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the existence of global solutions for a class of impulsive abstract functional differential equation with nonlocal conditions. The results are obtained by using the Leray-Schauder alternative fixed point theorem. An example is provided to illustrate the theory.
DOI : 10.22436/jnsa.004.02.02
Classification : 34A37, 34K30, 35R10, 35R12, 47D06, 49K25
Keywords: Impulsive functional differential equations, mild solutions, global solutions, semigroup theory.

SIVASANKARAN, S. 1 ; ARJUNAN, M. MALLIKA 2 ; VIJAYAKUMAR, V. 3

1 Department of Mathematics, University College, Sungkyunkwan University, Suwon 440-746, South Korea
2 Department of Mathematics, Karunya University, Karunya Nagar, Coimbatore - 641 114, Tamil Nadu, India
3 Department of Mathematics, Info Institute of Engineering, Kovilpalayam, Coimbatore - 641 107, Tamil Nadu, India
@article{JNSA_2011_4_2_a1,
     author = {SIVASANKARAN, S. and ARJUNAN, M. MALLIKA and VIJAYAKUMAR, V.},
     title = {EXISTENCE {OF} {GLOBAL} {SOLUTIONS} {FOR} {IMPULSIVE} {FUNCTIONAL} {DIFFERENTIAL} {EQUATIONS} {WITH} {NONLOCAL} {CONDITIONS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {102-114},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2011},
     doi = {10.22436/jnsa.004.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.02/}
}
TY  - JOUR
AU  - SIVASANKARAN, S.
AU  - ARJUNAN, M. MALLIKA
AU  - VIJAYAKUMAR, V.
TI  - EXISTENCE OF GLOBAL SOLUTIONS FOR IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 102
EP  - 114
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.02/
DO  - 10.22436/jnsa.004.02.02
LA  - en
ID  - JNSA_2011_4_2_a1
ER  - 
%0 Journal Article
%A SIVASANKARAN, S.
%A ARJUNAN, M. MALLIKA
%A VIJAYAKUMAR, V.
%T EXISTENCE OF GLOBAL SOLUTIONS FOR IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS
%J Journal of nonlinear sciences and its applications
%D 2011
%P 102-114
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.02/
%R 10.22436/jnsa.004.02.02
%G en
%F JNSA_2011_4_2_a1
SIVASANKARAN, S.; ARJUNAN, M. MALLIKA; VIJAYAKUMAR, V. EXISTENCE OF GLOBAL SOLUTIONS FOR IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 2, p. 102-114. doi : 10.22436/jnsa.004.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.02.02/

[1] Akca, H.; Boucherif, A.; Covachev, V. Impulsive functional differential equations with nonlocal conditions, Inter. J. Math. Math. Sci., Volume 29:5 (2002), pp. 251-256

[2] Anguraj, A.; K. Karthikeyan Existence of solutions for impulsive neutral functional differential equations with nonlocal conditions, Nonlinear Anal., Volume 70(7) (2009), pp. 2717-2721

[3] Anguraj, A.; Arjunan, M. Mallika Existence and uniqueness of mild and classical solutions of impulsive evolution equations, Electronic Journal of Differential Equations, Volume 111 (2005), pp. 1-8

[4] Anguraj, A.; Arjunan, M. Mallika Existence results for an impulsive neutral integro- differential equations in Banach spaces, Nonlinear Studies, Volume 16(1) (2009), pp. 33-48

[5] Bainov, D. D.; Simeonov, P. S. Impulsive Dierential Equations: Periodic Solutions and Applications, Longman Scientific and Technical Group, England, 1993

[6] Balachandran, K.; Park, J. Y.; Chandrasekaran, M. Nonlocal Cauchy problem for delay integrodifferential equations of Sobolve type in Banach spaces, Appl. Math. Lett., Volume 15(7) (2002), pp. 845-854

[7] Benchohra, M.; Henderson, J.; Ntouyas, S. K. Existence results for impulsive multi- valued semilinear neutral functional differential inclusions in Banach spaces, J. Math. Anal. Appl., Volume 263(2) (2001), pp. 763-780

[8] Benchohra, M.; Henderson, J.; Ntouyas, S. K. Impulsive neutral functional differential inclusions in Banach spaces, Appl. Math. Lett., Volume 15(8) (2002), pp. 917-924

[9] Benchohra, M.; Ouahab, A. Impulsive neutral functional differential equations with variable times, Nonlinear Anal., Volume 55(6) (2003), pp. 679-693

[10] Benchohra, M.; Henderson, J.; Ntouyas, S. K. Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, New York, 2006

[11] Byszewski, L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., Volume 162(2) (1991), pp. 494-505

[12] L. Byszewski Existence, uniqueness and asymptotic stability of solutions of abstract nonlocal Cauchy problems, Dynam. Systems Appl., Volume 5(4) (1996), pp. 595-605

[13] Byszewski, L.; Akca, H. Existence of solutions of a semilinear functional differential evolution nonlocal problem, Nonlinear Anal., Volume 34(1) (1998), pp. 65-72

[14] Byszewski, L.; Akca, H. On a mild solution of a semilinear functional-differential evolution nonlocal problem, J. Appl. Math. Stochastic Anal., Volume 10(3) (1997), pp. 265-271

[15] Chang, Y. K.; Anguraj, A.; Arjunan, M. Mallika Existence results for non-densely defined neutral impulsive differential inclusions with nonlocal conditions, J. Appl. Math. Comput., Volume 28 (2008), pp. 79-91

[16] Chang, Y. K.; Anguraj, A.; Arjunan, M. Mallika Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal.: Hybrid Systems, Volume 2(1) (2008), pp. 209-218

[17] Chang, Y. K.; Kavitha, V.; Arjunan, M. Mallika Existence results for impulsive neutral differential and integrodifferential equations with nonlocal conditions via fractional operators, Nonlinear Anal.: Hybrid Systems, Volume 4(1) (2010), pp. 32-43

[18] Cuevas, C.; Hernández, E.; Rabelo, M. The existence of solutions for impulsive neutral functional differential equations, Comput. Math. Appl., Volume 58 (2009), pp. 744-757

[19] Granas, A.; Dugundji, J. Fixed Point Theory, Springer-Verlag, New York , 2003

[20] Hernández, E. Existence results for partial neutral integrodifferential equations with nonlocal conditions, Dynam. Systems Appl., Volume 11(2) (2002), pp. 241-252

[21] Hernández, E.; Aki, S. M. Tanaka Global solutions for abstract functional differential equations with nonlocal conditions, Electronic Journal of Qualitative Theory of Differential Equations, Volume 50 (2009), pp. 1-8

[22] Hernández, E.; McKibben, M.; Henríquez, H. Existence results for abstract impulsive second order neutral functional differential equations, Nonlinear Anal., Volume 70 (2009), pp. 2736-2751

[23] Hernández, E.; Pierri, M.; Goncalves, G. Existence results for an impulsive abstract partial differential equations with state-dependent delay, Comput. Math. Appl. , Volume 52 (2006), pp. 411-420

[24] Hernández, E.; Mckibben, M. Some comments on: ''Existence of solutions of abstarct nonlinear second-order neutral functional integrodifferential equations'' , Comput. Math. Appl., Volume 50(5-6) (2005), pp. 655-669

[25] Hernández, E.; Rabello, M.; H. R. Henriquez Existence of solutions for impulsive partial neutral functional differential equations, J. Math. Anal. Appl., Volume 331 (2007), pp. 1135-1158

[26] Hernández, E.; Henriquez, H. R. Impulsive partial neutral differential equations, Appl. Math. Lett., Volume 19 (2006), pp. 215-222

[27] Hino, Y.; Murakami, S.; Naito, T. In Functional-differential equations with infinite delay, Lecture notes in Mathematics, 1473, Springer-Verlog, Berlin , 1991

[28] Karakostas, G. L.; Tsamatos, P. Ch. Suficient conditions for the existence of nonnegative solutions of a nonlocal boundary value problem, Appl. Math. Lett., Volume 15(4) (2002), pp. 401-407

[29] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S. Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989

[30] Liu, J. H. Nonlinear impulsive evolution equations, Dynam. Contin. Discrete Impuls. Sys., Volume 6 (1999), pp. 77-85

[31] Liang, J.; Liu, J. H.; Xiao, Ti-Jun Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Model., Volume 49 (2009), pp. 798-804

[32] Martin, R. H. Nonlinear Operators and Differential Equations in Banach Spaces, Robert E. Krieger Publ. Co., Florida , 1987

[33] Ntouyas, S. K.; Tsamatos, P. Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl., Volume 210 (1997), pp. 679-687

[34] Olmstead, W. E.; Roberts, C. A. The one-dimensional heat equation with a non- local initial condition, Appl. Math. Lett., Volume 10(3) (1997), pp. 84-94

[35] Park, J. Y.; Balachandran, K.; Annapoorani, N. Existence results for impulsive neutral functional integrodifferential equations with infinite delay, Nonlinear Analysis, Volume 71 (2009), pp. 3152-3162

[36] Pazy, A. Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York-Berlin, 1983

[37] Rogovchenko, Y. V. Impulsive evolution systems: Main results and new trends, Dynam. Contin. Discrete Impuls. Syst., Volume 3(1) (1997), pp. 57-88

[38] Rogovchenko, Y. V. Nonlinear impulsive evolution systems and application to population models, J. Math. Anal. Appl., Volume 207(2) (1997), pp. 300-315

[39] Samoilenko, A. M.; Perestyuk, N. A. Impulsive Differential Equations , World Scientific, Singapore, 1995

Cité par Sources :