HYERS-ULAM-RASSIAS STABILITY OF THE APOLLONIUS TYPE QUADRATIC MAPPING IN RN-SPACES
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 82-91.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Recently, in [5], Najati and Moradlou proved Hyers-Ulam-Rassias stability of the following quadratic mapping of Apollonius type
$Q(z - x) + Q(z - y) =\frac{ 1}{ 2}Q(x - y) + 2Q ( z -\frac{ x + y}{ 2})$
in non-Archimedean space. In this paper we establish Hyers-Ulam-Rassias stability of this functional equation in random normed spaces by direct method and fixed point method. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
DOI : 10.22436/jnsa.004.01.08
Classification : 39B22, 39B52, 39B82, 46S10
Keywords: Fixed point theory, Stability, Random normed space.

KENARY, H. AZADI 1 ; SHAFAAT, K. 1 ; SHAFEI , M.  1 ; TAKBIRI, G. 1

1 Department of Mathematics, College of Science, Yasouj University, Yasouj 75914-353, Iran
@article{JNSA_2011_4_1_a7,
     author = {KENARY, H. AZADI and SHAFAAT, K. and SHAFEI , M.  and TAKBIRI, G.},
     title = {HYERS-ULAM-RASSIAS {STABILITY} {OF} {THE} {APOLLONIUS} {TYPE} {QUADRATIC} {MAPPING} {IN} {RN-SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {82-91},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.22436/jnsa.004.01.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.08/}
}
TY  - JOUR
AU  - KENARY, H. AZADI
AU  - SHAFAAT, K.
AU  - SHAFEI , M. 
AU  - TAKBIRI, G.
TI  - HYERS-ULAM-RASSIAS STABILITY OF THE APOLLONIUS TYPE QUADRATIC MAPPING IN RN-SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 82
EP  - 91
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.08/
DO  - 10.22436/jnsa.004.01.08
LA  - en
ID  - JNSA_2011_4_1_a7
ER  - 
%0 Journal Article
%A KENARY, H. AZADI
%A SHAFAAT, K.
%A SHAFEI , M. 
%A TAKBIRI, G.
%T HYERS-ULAM-RASSIAS STABILITY OF THE APOLLONIUS TYPE QUADRATIC MAPPING IN RN-SPACES
%J Journal of nonlinear sciences and its applications
%D 2011
%P 82-91
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.08/
%R 10.22436/jnsa.004.01.08
%G en
%F JNSA_2011_4_1_a7
KENARY, H. AZADI; SHAFAAT, K.; SHAFEI , M. ; TAKBIRI, G. HYERS-ULAM-RASSIAS STABILITY OF THE APOLLONIUS TYPE QUADRATIC MAPPING IN RN-SPACES. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 82-91. doi : 10.22436/jnsa.004.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.08/

[1] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math. , Volume 27 (1984), pp. 76-86

[2] Czerwik, S. On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg , Volume 62 (1992), pp. 59-64

[3] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436

[4] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. , Volume 27 (1941), pp. 222-224

[5] Najati, A.; Moradlou, F. Hyers-Ulam-Rassias stability of the Apollonius type quadratic mapping in non-Archimedean normed spaces, Tamsui Oxford J. Math. Sci., Volume 24(4) (2008), pp. 367-380

[6] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300

[7] Saadati, R.; Vaezpour, M.; Cho, Y. J. A note to paper ''On the stability of cubic mappings and quartic mappings in random normed spaces, J. of Inequalities and Applications, Article ID 214530. , 2009

[8] Schewizer, B.; Sklar, A. Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, NY, USA, 1983

[9] Skof, F. Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano , Volume 53 (1983), pp. 113-129

[10] Ulam, S. M. A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8 Interscience Publishers, New York-London, 1960

Cité par Sources :