Voir la notice de l'article provenant de la source International Scientific Research Publications
$Q(z - x) + Q(z - y) =\frac{ 1}{ 2}Q(x - y) + 2Q ( z -\frac{ x + y}{ 2})$ |
KENARY, H. AZADI 1 ; SHAFAAT, K. 1 ; SHAFEI , M.  1 ; TAKBIRI, G. 1
@article{JNSA_2011_4_1_a7, author = {KENARY, H. AZADI and SHAFAAT, K. and SHAFEI , M. and TAKBIRI, G.}, title = {HYERS-ULAM-RASSIAS {STABILITY} {OF} {THE} {APOLLONIUS} {TYPE} {QUADRATIC} {MAPPING} {IN} {RN-SPACES}}, journal = {Journal of nonlinear sciences and its applications}, pages = {82-91}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2011}, doi = {10.22436/jnsa.004.01.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.08/} }
TY - JOUR AU - KENARY, H. AZADI AU - SHAFAAT, K. AU - SHAFEI , M. AU - TAKBIRI, G. TI - HYERS-ULAM-RASSIAS STABILITY OF THE APOLLONIUS TYPE QUADRATIC MAPPING IN RN-SPACES JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 82 EP - 91 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.08/ DO - 10.22436/jnsa.004.01.08 LA - en ID - JNSA_2011_4_1_a7 ER -
%0 Journal Article %A KENARY, H. AZADI %A SHAFAAT, K. %A SHAFEI , M. %A TAKBIRI, G. %T HYERS-ULAM-RASSIAS STABILITY OF THE APOLLONIUS TYPE QUADRATIC MAPPING IN RN-SPACES %J Journal of nonlinear sciences and its applications %D 2011 %P 82-91 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.08/ %R 10.22436/jnsa.004.01.08 %G en %F JNSA_2011_4_1_a7
KENARY, H. AZADI; SHAFAAT, K.; SHAFEI , M. ; TAKBIRI, G. HYERS-ULAM-RASSIAS STABILITY OF THE APOLLONIUS TYPE QUADRATIC MAPPING IN RN-SPACES. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 82-91. doi : 10.22436/jnsa.004.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.08/
[1] Remarks on the stability of functional equations, Aequationes Math. , Volume 27 (1984), pp. 76-86
[2] On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg , Volume 62 (1992), pp. 59-64
[3] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436
[4] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. , Volume 27 (1941), pp. 222-224
[5] Hyers-Ulam-Rassias stability of the Apollonius type quadratic mapping in non-Archimedean normed spaces, Tamsui Oxford J. Math. Sci., Volume 24(4) (2008), pp. 367-380
[6] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300
[7] A note to paper ''On the stability of cubic mappings and quartic mappings in random normed spaces, J. of Inequalities and Applications, Article ID 214530. , 2009
[8] Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, NY, USA, 1983
[9] Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano , Volume 53 (1983), pp. 113-129
[10] A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8 Interscience Publishers, New York-London, 1960
Cité par Sources :