Voir la notice de l'article provenant de la source International Scientific Research Publications
$rf(\frac{x + y + z}{ r} ) = f(x) + f(y) + f(z),$ |
KABOLI GHARETAPEH, S. 1 ; TALEBI, S. 1 ; PARK , CHOONKIL  2 ; ESHAGHI GORDJI, MADJID 3
@article{JNSA_2011_4_1_a6, author = {KABOLI GHARETAPEH, S. and TALEBI, S. and PARK , CHOONKIL and ESHAGHI GORDJI, MADJID}, title = {JORDAN {HOMOMORPHISMS} {IN} {PROPER} {\(JCQ^*\)-TRIPLES}}, journal = {Journal of nonlinear sciences and its applications}, pages = {70-81}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2011}, doi = {10.22436/jnsa.004.01.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.07/} }
TY - JOUR AU - KABOLI GHARETAPEH, S. AU - TALEBI, S. AU - PARK , CHOONKIL AU - ESHAGHI GORDJI, MADJID TI - JORDAN HOMOMORPHISMS IN PROPER \(JCQ^*\)-TRIPLES JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 70 EP - 81 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.07/ DO - 10.22436/jnsa.004.01.07 LA - en ID - JNSA_2011_4_1_a6 ER -
%0 Journal Article %A KABOLI GHARETAPEH, S. %A TALEBI, S. %A PARK , CHOONKIL %A ESHAGHI GORDJI, MADJID %T JORDAN HOMOMORPHISMS IN PROPER \(JCQ^*\)-TRIPLES %J Journal of nonlinear sciences and its applications %D 2011 %P 70-81 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.07/ %R 10.22436/jnsa.004.01.07 %G en %F JNSA_2011_4_1_a6
KABOLI GHARETAPEH, S.; TALEBI, S.; PARK , CHOONKIL ; ESHAGHI GORDJI, MADJID. JORDAN HOMOMORPHISMS IN PROPER \(JCQ^*\)-TRIPLES. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 70-81. doi : 10.22436/jnsa.004.01.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.07/
[1] New methods and structures in the theory of the multi-mode Dicke laser model , J. Math. Phys., Volume 36 (1995), pp. 5598-5626
[2] Partial *-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002
[3] On approximate ring homomorphisms, J. Math. Anal. Appl. , Volume 276 (2002), pp. 589-597
[4] Applications of topological *-algebras of unbounded operators, J. Math. Phys. , Volume 39 (1998), pp. 6091-6105
[5] Fixed point results in topological *-algebras of unbounded operators, Publ. RIMS Kyoto Univ. , Volume 37 (2001), pp. 397-418
[6] Applications of topological *-algebras of unbounded operators to modified quons, Nuovo Cimento B , Volume 117 (2002), pp. 593-611
[7] Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc. , Volume 129 (2001), pp. 2973-2980
[8] *-derivations of quasi-*-algebras, Int. J. Math. Math. Sci., Volume 21 (2004), pp. 1077-1096
[9] Exponentiating derivations of quasi-*-algebras: possible approaches and applications, Int. J. Math. Math. Sci. , Volume 2005 (2005), pp. 2805-2820
[10] Partial *-algebras of closed linear operators in Hilbert space, Publ. RIMS Kyoto Univ. 21 (1985), 205-236, Volume 22 (1986), pp. 507-511
[11] Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys. , Volume 66 (1992), pp. 849-866
[12] New structures in the theory of the laser model II: Microscopic dynamics and a non-equilibrium entropy principle, J. Math. Phys. , Volume 39 (1998), pp. 2730-2747
[13] Almost mean field Ising model: an algebraic approach, J. Stat. Phys. , Volume 65 (1991), pp. 469-482
[14] A note on the algebraic approach to the ''almost'' mean field Heisenberg model, Nuovo Cimento B , Volume 108 (1993), pp. 779-784
[15] States and representations of \(CQ^*\)-algebras , Ann. Inst. H. Poincaré , Volume 61 (1994), pp. 103-133
[16] The Heisenberg dynamics of spin systems: a quasi-*-algebras approach, J. Math. Phys. , Volume 37 (1996), pp. 4219-4234
[17] \(CQ^*\)-algebras: structure properties, Publ. RIMS Kyoto Univ. , Volume 32 (1996), pp. 85-116
[18] Morphisms of certain Banach \(C^*\)-modules, Publ. RIMS Kyoto Univ. , Volume 36 (2000), pp. 681-705
[19] Algebraic dynamics in \(O^*\)-algebras: a perturbative approach, J. Math. Phys. , Volume 43 (2002), pp. 3280-3292
[20] Quasi *-algebras of measurable operators, Studia Math. , Volume 172 (2006), pp. 289-305
[21] The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc. , Volume 74 (1979), pp. 242-246
[22] Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. , Volume 16 (1949), pp. 385-397
[23] Functional Equations and Inequalities in Several Variables , World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002
[24] Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003
[25] Partial \(W^*\)-dynamical systems, in Current Topics in Operator Algebras, Proceedings of the Satellite Conference of ICM-90, World Scientific, Singapore (1991), pp. 202-217
[26] Quasi-*-algebras valued quantized fields, Ann. Inst. H. Poincaré , Volume 46 (1987), pp. 175-185
[27] Isometries on Banach Spaces: Function Spaces, Monographs and Surveys in Pure and Applied Mathematics Vol. 129, Chapman & Hall/CRC, Boca Raton, London, New York and Washington D.C., 2003
[28] Local algebras of observables and pointlike localized fields, Commun. Math. Phys. , Volume 80 (1981), pp. 555-561
[29] On stability of additive mappings, Int. J. Math. Math. Sci. , Volume 14 (1991), pp. 431-434
[30] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436
[31] An algebraic approach to quantum field theory, J. Math. Phys. , Volume 5 (1964), pp. 848-861
[32] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. , Volume 27 (1941), pp. 222-224
[33] Stability of Functional Equations in Several Vari- ables, Birkhäuser, Basel, 1998
[34] Approximate homomorphisms, Aequationes Math. , Volume 44 (1992), pp. 125-153
[35] Approximately multiplicative maps between Banach algebras , J. London Math. Soc. , Volume (2) 37 (1988), pp. 294-316
[36] Algebras of unbounded operators and quantum dynamics, Physica , Volume 124 A (1984), pp. 471-480
[37] Mathematical structures for long range dynamics and symmetry breaking, J. Math. Phys. , Volume 28 (1987), pp. 622-635
[38] Algµebres unitaires et espaces d'Ambrose, Ann. Ecole Norm. Sup. , Volume 70 (1953), pp. 381-401
[39] Lie *-homomorphisms between Lie \(C^*\)-algebras and Lie *-derivations on Lie \(C^*\)-algebras, J. Math. Anal. Appl. , Volume 293 (2004), pp. 419-434
[40] Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc. , Volume 36 (2005), pp. 79-97
[41] Homomorphisms between Lie \(JC^*\)-algebras and Cauchy-Rassias stability of Lie \(JC^*\)-algebra derivations, J. Lie Theory , Volume 15 (2005), pp. 393-414
[42] Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. , Volume 132 (2008), pp. 87-96
[43] Isomorphisms between unital \(C^*\)-algebras, J. Math. Anal. Appl. , Volume 307 (2005), pp. 753-762
[44] Approximate homomorphisms on \(JB^*\)-triples, J. Math. Anal. Appl. , Volume 306 (2005), pp. 375-381
[45] Isomorphisms between \(C^*\)-ternary algebras, J. Math. Phys. , 47, no. 10, 103512 , 2006
[46] Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. , 41820, 2007
[47] On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. , Volume 108 (1984), pp. 445-446
[48] Solution of a problem of Ulam, J. Approx. Theory , Volume 57 (1989), pp. 268-273
[49] Refined Hyers-Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math. , Volume 131 (2007), pp. 89-98
[50] Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. , Volume 129 (2005), pp. 545-558
[51] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300
[52] Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. , Volume 39 (1990), pp. 292-293
[53] The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. , Volume 246 (2000), pp. 352-378
[54] On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. , Volume 251 (2000), pp. 264-284
[55] On the stability of functional equations and a problem of Ulam, Acta Appl. Math. , Volume 62 (2000), pp. 23-130
[56] Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003
[57] On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. , Volume 173 (1993), pp. 325-338
[58] Quantum Mechanics and its Emergent Macrophysics, Princeton University Press, Princeton and Oxford, 2002
[59] Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano , Volume 53 (1983), pp. 113-129
[60] PCT, Spin and Statistics and All That, Benjamin Inc., New York, 1964
[61] On the mathematical structure of the B.C.S.-model, Commun. Math. Phys. , Volume 4 (1967), pp. 303-314
[62] Quasi-*-algebras of operators and their applications, Rev. Math. Phys. , Volume 7 (1995), pp. 1303-1332
[63] Some seminorms on quasi-*-algebras, Studia Math. , Volume 158 (2003), pp. 99-115
[64] Bounded elements and spectrum in Banach quasi *-algebras, Studia Math. , Volume 172 (2006), pp. 249-273
[65] Problems in Modern Mathematics, Wiley, New York, 1960
Cité par Sources :