JORDAN HOMOMORPHISMS IN PROPER $JCQ^*$-TRIPLES
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 70-81.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate Jordan homomorphisms in proper $JCQ^*$-triples associated with the generalized 3-variable Jesnsen functional equation
$rf(\frac{x + y + z}{ r} ) = f(x) + f(y) + f(z),$
with $r \in (0; 3) /\{1\}$. We moreover prove the Hyers-Ulam-Rassias stability of Jordan homomorphisms in proper $JCQ^*$-triples.
DOI : 10.22436/jnsa.004.01.07
Classification : 17C65, 47L60, 47Jxx, 39B52, 46L05
Keywords: Hyers-Ulam-Rassias stability, proper \(JCQ^*\)-triple Jordan homomorphism.

KABOLI GHARETAPEH, S. 1 ; TALEBI, S. 1 ; PARK , CHOONKIL  2 ; ESHAGHI GORDJI, MADJID 3

1 Department of Mathematics, Payame Noor University, Mashhad Branch, Mashhad, Iran
2 Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
3 Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
@article{JNSA_2011_4_1_a6,
     author = {KABOLI GHARETAPEH, S. and TALEBI, S. and PARK , CHOONKIL  and ESHAGHI GORDJI, MADJID},
     title = {JORDAN {HOMOMORPHISMS} {IN} {PROPER} {\(JCQ^*\)-TRIPLES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {70-81},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.22436/jnsa.004.01.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.07/}
}
TY  - JOUR
AU  - KABOLI GHARETAPEH, S.
AU  - TALEBI, S.
AU  - PARK , CHOONKIL 
AU  - ESHAGHI GORDJI, MADJID
TI  - JORDAN HOMOMORPHISMS IN PROPER \(JCQ^*\)-TRIPLES
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 70
EP  - 81
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.07/
DO  - 10.22436/jnsa.004.01.07
LA  - en
ID  - JNSA_2011_4_1_a6
ER  - 
%0 Journal Article
%A KABOLI GHARETAPEH, S.
%A TALEBI, S.
%A PARK , CHOONKIL 
%A ESHAGHI GORDJI, MADJID
%T JORDAN HOMOMORPHISMS IN PROPER \(JCQ^*\)-TRIPLES
%J Journal of nonlinear sciences and its applications
%D 2011
%P 70-81
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.07/
%R 10.22436/jnsa.004.01.07
%G en
%F JNSA_2011_4_1_a6
KABOLI GHARETAPEH, S.; TALEBI, S.; PARK , CHOONKIL ; ESHAGHI GORDJI, MADJID. JORDAN HOMOMORPHISMS IN PROPER \(JCQ^*\)-TRIPLES. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 70-81. doi : 10.22436/jnsa.004.01.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.07/

[1] Alli, G.; G. L. Sewell New methods and structures in the theory of the multi-mode Dicke laser model , J. Math. Phys., Volume 36 (1995), pp. 5598-5626

[2] Antoine, J. P.; Inoue, A.; Trapani, C. Partial *-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002

[3] R. Badora On approximate ring homomorphisms, J. Math. Anal. Appl. , Volume 276 (2002), pp. 589-597

[4] Bagarello, F. Applications of topological *-algebras of unbounded operators, J. Math. Phys. , Volume 39 (1998), pp. 6091-6105

[5] Bagarello, F. Fixed point results in topological *-algebras of unbounded operators, Publ. RIMS Kyoto Univ. , Volume 37 (2001), pp. 397-418

[6] Bagarello, F. Applications of topological *-algebras of unbounded operators to modified quons, Nuovo Cimento B , Volume 117 (2002), pp. 593-611

[7] Bagarello, F.; Inoue, A.; Trapani, C. Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc. , Volume 129 (2001), pp. 2973-2980

[8] Bagarello, F.; Inoue, A.; C. Trapani *-derivations of quasi-*-algebras, Int. J. Math. Math. Sci., Volume 21 (2004), pp. 1077-1096

[9] Bagarello, F.; Inoue, A.; Trapani, C. Exponentiating derivations of quasi-*-algebras: possible approaches and applications, Int. J. Math. Math. Sci. , Volume 2005 (2005), pp. 2805-2820

[10] Bagarello, F.; W. Karwowski Partial *-algebras of closed linear operators in Hilbert space, Publ. RIMS Kyoto Univ. 21 (1985), 205-236, Volume 22 (1986), pp. 507-511

[11] Bagarello, F.; Morchio, G. Dynamics of mean-field spin models from basic results in abstract differential equations, J. Stat. Phys. , Volume 66 (1992), pp. 849-866

[12] Bagarello, F.; Sewell, G. L. New structures in the theory of the laser model II: Microscopic dynamics and a non-equilibrium entropy principle, J. Math. Phys. , Volume 39 (1998), pp. 2730-2747

[13] Bagarello, F.; Trapani, C. Almost mean field Ising model: an algebraic approach, J. Stat. Phys. , Volume 65 (1991), pp. 469-482

[14] Bagarello, F.; C. Trapani A note on the algebraic approach to the ''almost'' mean field Heisenberg model, Nuovo Cimento B , Volume 108 (1993), pp. 779-784

[15] Bagarello, F.; C. Trapani States and representations of \(CQ^*\)-algebras , Ann. Inst. H. Poincaré , Volume 61 (1994), pp. 103-133

[16] Bagarello, F.; C. Trapani The Heisenberg dynamics of spin systems: a quasi-*-algebras approach, J. Math. Phys. , Volume 37 (1996), pp. 4219-4234

[17] Bagarello, F.; C. Trapani \(CQ^*\)-algebras: structure properties, Publ. RIMS Kyoto Univ. , Volume 32 (1996), pp. 85-116

[18] Bagarello, F.; Trapani, C. Morphisms of certain Banach \(C^*\)-modules, Publ. RIMS Kyoto Univ. , Volume 36 (2000), pp. 681-705

[19] Bagarello, F.; C. Trapani Algebraic dynamics in \(O^*\)-algebras: a perturbative approach, J. Math. Phys. , Volume 43 (2002), pp. 3280-3292

[20] Bagarello, F.; Trapani, C.; S. Triolo Quasi *-algebras of measurable operators, Studia Math. , Volume 172 (2006), pp. 289-305

[21] Baker, J.; Lawrence, J.; Zorzitto, F. The stability of the equation f(x+y) = f(x)f(y), Proc. Amer. Math. Soc. , Volume 74 (1979), pp. 242-246

[22] Bourgin, D. G. Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. , Volume 16 (1949), pp. 385-397

[23] S. Czerwik Functional Equations and Inequalities in Several Variables , World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002

[24] Czerwik, S. Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003

[25] Ekhaguere, G. O. S. Partial \(W^*\)-dynamical systems, in Current Topics in Operator Algebras, Proceedings of the Satellite Conference of ICM-90, World Scientific, Singapore (1991), pp. 202-217

[26] Epifanio, G.; Trapani, C. Quasi-*-algebras valued quantized fields, Ann. Inst. H. Poincaré , Volume 46 (1987), pp. 175-185

[27] Fleming, R. J.; Jamison, J. E. Isometries on Banach Spaces: Function Spaces, Monographs and Surveys in Pure and Applied Mathematics Vol. 129, Chapman & Hall/CRC, Boca Raton, London, New York and Washington D.C., 2003

[28] Fredenhagen, K.; Hertel, J. Local algebras of observables and pointlike localized fields, Commun. Math. Phys. , Volume 80 (1981), pp. 555-561

[29] Gajda, Z. On stability of additive mappings, Int. J. Math. Math. Sci. , Volume 14 (1991), pp. 431-434

[30] Gavruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436

[31] Haag, R.; Kastler, D. An algebraic approach to quantum field theory, J. Math. Phys. , Volume 5 (1964), pp. 848-861

[32] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. , Volume 27 (1941), pp. 222-224

[33] Hyers, D. H.; Isac, G.; Rassias, Th. M. Stability of Functional Equations in Several Vari- ables, Birkhäuser, Basel, 1998

[34] Hyers, D. H.; Rassias, Th. M. Approximate homomorphisms, Aequationes Math. , Volume 44 (1992), pp. 125-153

[35] Johnson, B. E. Approximately multiplicative maps between Banach algebras , J. London Math. Soc. , Volume (2) 37 (1988), pp. 294-316

[36] Lassner, G. Algebras of unbounded operators and quantum dynamics, Physica , Volume 124 A (1984), pp. 471-480

[37] Morchio, G.; Strocchi, F. Mathematical structures for long range dynamics and symmetry breaking, J. Math. Phys. , Volume 28 (1987), pp. 622-635

[38] Barriére, R. Pallu de la Algµebres unitaires et espaces d'Ambrose, Ann. Ecole Norm. Sup. , Volume 70 (1953), pp. 381-401

[39] Park, C. Lie *-homomorphisms between Lie \(C^*\)-algebras and Lie *-derivations on Lie \(C^*\)-algebras, J. Math. Anal. Appl. , Volume 293 (2004), pp. 419-434

[40] Park, C. Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc. , Volume 36 (2005), pp. 79-97

[41] C. Park Homomorphisms between Lie \(JC^*\)-algebras and Cauchy-Rassias stability of Lie \(JC^*\)-algebra derivations, J. Lie Theory , Volume 15 (2005), pp. 393-414

[42] Park, C. Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. , Volume 132 (2008), pp. 87-96

[43] Park, C. Isomorphisms between unital \(C^*\)-algebras, J. Math. Anal. Appl. , Volume 307 (2005), pp. 753-762

[44] Park, C. Approximate homomorphisms on \(JB^*\)-triples, J. Math. Anal. Appl. , Volume 306 (2005), pp. 375-381

[45] Park, C. Isomorphisms between \(C^*\)-ternary algebras, J. Math. Phys. , 47, no. 10, 103512 , 2006

[46] Park, C.; Cho, Y.; M. Han Functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl. , 41820, 2007

[47] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. , Volume 108 (1984), pp. 445-446

[48] Rassias, J. M. Solution of a problem of Ulam, J. Approx. Theory , Volume 57 (1989), pp. 268-273

[49] Rassias, J. M. Refined Hyers-Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math. , Volume 131 (2007), pp. 89-98

[50] Rassias, J. M.; Rassias, M. J. Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. , Volume 129 (2005), pp. 545-558

[51] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300

[52] Rassias, Th. M. Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. , Volume 39 (1990), pp. 292-293

[53] Rassias, Th. M. The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. , Volume 246 (2000), pp. 352-378

[54] Rassias, Th. M. On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. , Volume 251 (2000), pp. 264-284

[55] Rassias, Th. M. On the stability of functional equations and a problem of Ulam, Acta Appl. Math. , Volume 62 (2000), pp. 23-130

[56] Rassias, Th. M. Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003

[57] Rassias, Th. M.; ·Semrl, P. On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. , Volume 173 (1993), pp. 325-338

[58] Sewell, G. L. Quantum Mechanics and its Emergent Macrophysics, Princeton University Press, Princeton and Oxford, 2002

[59] Skof, F. Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano , Volume 53 (1983), pp. 113-129

[60] Streater, R. F.; Wightman, A. S. PCT, Spin and Statistics and All That, Benjamin Inc., New York, 1964

[61] Thirring, W.; A. Wehrl On the mathematical structure of the B.C.S.-model, Commun. Math. Phys. , Volume 4 (1967), pp. 303-314

[62] C. Trapani Quasi-*-algebras of operators and their applications, Rev. Math. Phys. , Volume 7 (1995), pp. 1303-1332

[63] C. Trapani Some seminorms on quasi-*-algebras, Studia Math. , Volume 158 (2003), pp. 99-115

[64] Trapani, C. Bounded elements and spectrum in Banach quasi *-algebras, Studia Math. , Volume 172 (2006), pp. 249-273

[65] Ulam, S. M. Problems in Modern Mathematics, Wiley, New York, 1960

Cité par Sources :