APPROXIMATELY PARTIAL TERNARY QUADRATIC DERIVATIONS ON BANACH TERNARY ALGEBRAS
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 60-69.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let $A_1,A_2,...,A_n$ be normed ternary algebras over the complex field $\mathbb{C}$ and let $B$ be a Banach ternary algebra over $\mathbb{C}$. A mapping $\delta_k$ from $A_1 \times ...\times A_n$ into $B$ is called a k-th partial ternary quadratic derivation if there exists a mapping $g_k : A_k \rightarrow B$ such that
$\delta_k(x_1,..., [a_kb_kc_k],..., x_n) =[g_k(a_k)g_k(b_k)\delta_k(x_1 ,..., c_k,..., xn)] + [g_k(a_k)\delta_k(x_1,..., b_k,..., x_n)g_k(c_k)] + [\delta_k(x_1,...,a_k,..., x_n)g_k(b_k)g_k(c_k)]$
and
$\delta_k(x_1,..., a_k + b_k,..., x_n) + \delta_k(x_1,... a_k - b_k,..., x_n) = 2\delta_k(x_1,..., a_k,..., x_n) + 2\delta_k(x_1,...,b_k,..., x_n)$
for all $a_k, b_k, c_k \in A_k$ and all $x_i \in A_i (i \neq k)$. We prove the Hyers-Ulam- Rassias stability of the partial ternary quadratic derivations in Banach ternary algebras.
DOI : 10.22436/jnsa.004.01.06
Classification : 46K05, 39B82, 39B52, 47B47
Keywords: Hyers-Ulam-Rassias stability, Banach ternary algebra, Partial ternary quadratic derivation.

JAVADIAN, A. 1 ; ESHAGHI GORDJI , M. 2 ; BAVAND SAVADKOUHI, M. 2

1 Department of Physics, Semnan University, P. O. Box 35195-363, Semnan, Iran
2 Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
@article{JNSA_2011_4_1_a5,
     author = {JAVADIAN, A. and ESHAGHI GORDJI , M. and BAVAND SAVADKOUHI, M.},
     title = {APPROXIMATELY {PARTIAL} {TERNARY} {QUADRATIC} {DERIVATIONS} {ON} {BANACH} {TERNARY} {ALGEBRAS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {60-69},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.22436/jnsa.004.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.06/}
}
TY  - JOUR
AU  - JAVADIAN, A.
AU  - ESHAGHI GORDJI , M.
AU  - BAVAND SAVADKOUHI, M.
TI  - APPROXIMATELY PARTIAL TERNARY QUADRATIC DERIVATIONS ON BANACH TERNARY ALGEBRAS
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 60
EP  - 69
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.06/
DO  - 10.22436/jnsa.004.01.06
LA  - en
ID  - JNSA_2011_4_1_a5
ER  - 
%0 Journal Article
%A JAVADIAN, A.
%A ESHAGHI GORDJI , M.
%A BAVAND SAVADKOUHI, M.
%T APPROXIMATELY PARTIAL TERNARY QUADRATIC DERIVATIONS ON BANACH TERNARY ALGEBRAS
%J Journal of nonlinear sciences and its applications
%D 2011
%P 60-69
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.06/
%R 10.22436/jnsa.004.01.06
%G en
%F JNSA_2011_4_1_a5
JAVADIAN, A.; ESHAGHI GORDJI , M.; BAVAND SAVADKOUHI, M. APPROXIMATELY PARTIAL TERNARY QUADRATIC DERIVATIONS ON BANACH TERNARY ALGEBRAS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 60-69. doi : 10.22436/jnsa.004.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.06/

[1] Abbaszadeh, S. Intuitionistic fuzzy stability of a quadratic and quartic functional equation, Int. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 100-124

[2] Badora, R. On approximate derivations, Math. Inequal. Appl. , Volume 9 (2006), pp. 167-173

[3] Savadkouhi, M. Bavand; Gordji, M. Eshaghi; Rassias, J. M.; Ghobadipour, N. Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys, Volume 50 (2009), pp. 1-9

[4] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math. , Volume 27 (1984), pp. 76-86

[5] Chu, H.; Koo, S.; J. Park Partial stabilities and partial derivations of n-variable functions, Nonlinear Anal.-TMA (to appear)

[6] Czerwik, S. On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg , Volume 62 (1992), pp. 59-64

[7] Ebadian, A.; Najati, A.; Gordji, M. E. On approximate additive-quartic and quadratic- cubic functional equations in two variables on abelian groups, Results Math. , DOI 10.1007/s00025-010-0018-4 , 2010

[8] M. Eshaghi Gordji Stability of a functional equation deriving from quartic and additive functions, Bull. Korean Math. Soc. , Volume 47 (2010), pp. 491-502

[9] Gordji, M. Eshaghi Stability of an additive-quadratic functional equation of two variables in F-spaces, Journal of Nonlinear Sciences and Applications, Volume 2 (2009), pp. 251-259

[10] Gordji, M. Eshaghi; Abbaszadeh, S.; C. Park On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces , J. Ineq. Appl., Article ID 153084 (2009), pp. 1-26

[11] Gordji, M. Eshaghi; Savadkouhi, M. Bavand; Park, C. Quadratic-quartic functional equations in RN-spaces , J. Ineq. Appl. Article ID 868423 (2009), pp. 1-14

[12] Gordji, M. Eshaghi; Savadkouhi, M. Bavand; Bidkham, M. Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces, Journal of Computational Analysis and Applications, Volume 12 (2010), pp. 454-462

[13] Gordji, M. Eshaghi; Bodaghi, A. On the Hyers-Ulam-Rasias Stability problem for quadratic functional equations , East Journal On Approximations, Volume 16 (2010), pp. 123-130

[14] Gordji, M. Eshaghi; Bodaghi, A. On the stability of quadratic double centralizers on Banach algebras, J. Comput. Anal. Appl. (in press)

[15] Gordji, M. Eshaghi; Ghaemi, M. B.; Gharetapeh, S. Kaboli; Shams, S.; Ebadian, A. On the stability of \(J^*\)-derivations, Journal of Geometry and Physics. , Volume 60(3) (2010), pp. 454-459

[16] Gordji, M. Eshaghi; Ghanifard, M.; Khodaei, H.; Park, C. A fixed point approach to the random stability of a functional equation driving from quartic and quadratic mappings, Discrete Dynamics in Nature and Society, Article ID: 670542. , 2010

[17] Gordji, M. Eshaghi; Ghobadipour, N. Stability of (\(\alpha,\beta,\psi\))-derivations on Lie \(C^*\)-algebras, To appear in International Journal of Geometric Methods in Modern Physics (IJGMMP)

[18] Gordji, M. Eshaghi; Gharetapeh, S. Kaboli; T. Karimi; Rashidi, E.; M. Aghaei Ternary Jordan derivations on \(C^*\)-ternary algebras, Journal of Computational Analysis and Applications, Volume 12 (2010), pp. 463-470

[19] Gordji, M. Eshaghi; Kaboli-Gharetapeh, S.; Park, C.; S. Zolfaghri Stability of an additive-cubic-quartic functional equation, Advances in Difference Equations. Article ID 395693 (2009), pp. 1-20

[20] Gordji, M. Eshaghi; Gharetapeh, S. Kaboli; Rassias, J. M.; Zolfaghari, S. Solution and stability of a mixed type additive, quadratic and cubic functional equation, Advances in difference equations, Article ID 826130, doi:10.1155/2009/826130. , Volume 2009 (2009), pp. 1-17

[21] Gordji, M. Eshaghi; H. Khodaei On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abs. Appl. Anal. Article ID 923476 (2009), pp. 1-11

[22] Gordji, M. Eshaghi; Khodaei, H. Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis-TMA , Volume 71 (2009), pp. 5629-5643

[23] Gordji, M. Eshaghi; Moslehian, M. S. A trick for investigation of approximate derivations, Math. Commun. , Volume 15 (2010), pp. 99-105

[24] Gordji, M. Eshaghi; Ramezani, M.; Ebadian, A.; Park, C. Quadratic double centralizers and quadratic multipliers, Advances in Difference Equations (in press)

[25] Gordji, M. Eshaghi; Rassias, J. M.; Ghobadipour, N. Generalized Hyers-Ulam stability of the generalized (n; k)-derivations , Abs. Appl. Anal., Article ID 437931, Volume 2009 (2009), pp. 1-8

[26] Farokhzad, R.; Hosseinioun, S. A. R. Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach, Internat. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 42-53

[27] Z. Gajda On stability of additive mappings, Internat. J. Math. Sci. , Volume 14 (1991), pp. 431-434

[28] G·avruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl, Volume 184 (1994), pp. 431-436

[29] Grabiec, A. The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen. , Volume 48 (1996), pp. 217-235

[30] Hyers, D. H.; Isac, G.; Rassias, Th. M. Stability of functional equations in several variables, Birkhaer, Basel, 1998

[31] Hyers, D. H. On the stability of the linear functional equation, Proc. Natl. Acad. Sci, Volume 27 (1941), pp. 222-224

[32] Isac, G.; Rassias, Th. M. On the Hyers-Ulam stability of \(\psi\)-additive mappings, J. Approx. Theory, Volume 72 (1993), pp. 131-137

[33] Jun, K.; Park, D. Almost derivations on the Banach algebra \(C^n[0, 1]\), Bull. Korean Math. Soc. , Volume 33 (1996), pp. 359-366

[34] Kannappan, Pl. Quadratic functional equation and inner product spaces, Results Math., Volume 27 (1995), pp. 368-372

[35] Khodaei, H.; M. Kamyar Fuzzy approximately additive mappings, Int. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 44-53

[36] Khodaei, H.; Rassias, Th. M. Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 22-41

[37] Park, C.; M. Eshaghi Gordji Comment on Approximate ternary Jordan derivations on Banach ternary algebras [Bavand Savadkouhi et al. , J. Math. Phys. 50, 042303 (2009)], J. Math. Phys. , Volume 51 (2010), pp. 1-7

[38] Park, C.; A. Najati Generalized additive functional inequalities in Banach algebras, Int. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 54-62

[39] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300

[40] Skof, F. Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129

[41] S. M. Ulam Problems in modern mathematics, Chapter VI, science ed., Wiley, New York, 1940

Cité par Sources :