Voir la notice de l'article provenant de la source International Scientific Research Publications
$\delta_k(x_1,..., [a_kb_kc_k],..., x_n) =[g_k(a_k)g_k(b_k)\delta_k(x_1 ,..., c_k,..., xn)] + [g_k(a_k)\delta_k(x_1,..., b_k,..., x_n)g_k(c_k)] + [\delta_k(x_1,...,a_k,..., x_n)g_k(b_k)g_k(c_k)]$ |
$\delta_k(x_1,..., a_k + b_k,..., x_n) + \delta_k(x_1,... a_k - b_k,..., x_n) = 2\delta_k(x_1,..., a_k,..., x_n) + 2\delta_k(x_1,...,b_k,..., x_n)$ |
JAVADIAN, A. 1 ; ESHAGHI GORDJI , M. 2 ; BAVAND SAVADKOUHI, M. 2
@article{JNSA_2011_4_1_a5, author = {JAVADIAN, A. and ESHAGHI GORDJI , M. and BAVAND SAVADKOUHI, M.}, title = {APPROXIMATELY {PARTIAL} {TERNARY} {QUADRATIC} {DERIVATIONS} {ON} {BANACH} {TERNARY} {ALGEBRAS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {60-69}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2011}, doi = {10.22436/jnsa.004.01.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.06/} }
TY - JOUR AU - JAVADIAN, A. AU - ESHAGHI GORDJI , M. AU - BAVAND SAVADKOUHI, M. TI - APPROXIMATELY PARTIAL TERNARY QUADRATIC DERIVATIONS ON BANACH TERNARY ALGEBRAS JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 60 EP - 69 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.06/ DO - 10.22436/jnsa.004.01.06 LA - en ID - JNSA_2011_4_1_a5 ER -
%0 Journal Article %A JAVADIAN, A. %A ESHAGHI GORDJI , M. %A BAVAND SAVADKOUHI, M. %T APPROXIMATELY PARTIAL TERNARY QUADRATIC DERIVATIONS ON BANACH TERNARY ALGEBRAS %J Journal of nonlinear sciences and its applications %D 2011 %P 60-69 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.06/ %R 10.22436/jnsa.004.01.06 %G en %F JNSA_2011_4_1_a5
JAVADIAN, A.; ESHAGHI GORDJI , M.; BAVAND SAVADKOUHI, M. APPROXIMATELY PARTIAL TERNARY QUADRATIC DERIVATIONS ON BANACH TERNARY ALGEBRAS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 60-69. doi : 10.22436/jnsa.004.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.06/
[1] Intuitionistic fuzzy stability of a quadratic and quartic functional equation, Int. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 100-124
[2] On approximate derivations, Math. Inequal. Appl. , Volume 9 (2006), pp. 167-173
[3] Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys, Volume 50 (2009), pp. 1-9
[4] Remarks on the stability of functional equations, Aequationes Math. , Volume 27 (1984), pp. 76-86
[5] Partial stabilities and partial derivations of n-variable functions, Nonlinear Anal.-TMA (to appear)
[6] On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg , Volume 62 (1992), pp. 59-64
[7] On approximate additive-quartic and quadratic- cubic functional equations in two variables on abelian groups, Results Math. , DOI 10.1007/s00025-010-0018-4 , 2010
[8] Stability of a functional equation deriving from quartic and additive functions, Bull. Korean Math. Soc. , Volume 47 (2010), pp. 491-502
[9] Stability of an additive-quadratic functional equation of two variables in F-spaces, Journal of Nonlinear Sciences and Applications, Volume 2 (2009), pp. 251-259
[10] On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces , J. Ineq. Appl., Article ID 153084 (2009), pp. 1-26
[11] Quadratic-quartic functional equations in RN-spaces , J. Ineq. Appl. Article ID 868423 (2009), pp. 1-14
[12] Stability of a mixed type additive and quadratic functional equation in non-Archimedean spaces, Journal of Computational Analysis and Applications, Volume 12 (2010), pp. 454-462
[13] On the Hyers-Ulam-Rasias Stability problem for quadratic functional equations , East Journal On Approximations, Volume 16 (2010), pp. 123-130
[14] On the stability of quadratic double centralizers on Banach algebras, J. Comput. Anal. Appl. (in press)
[15] On the stability of \(J^*\)-derivations, Journal of Geometry and Physics. , Volume 60(3) (2010), pp. 454-459
[16] A fixed point approach to the random stability of a functional equation driving from quartic and quadratic mappings, Discrete Dynamics in Nature and Society, Article ID: 670542. , 2010
[17] Stability of (\(\alpha,\beta,\psi\))-derivations on Lie \(C^*\)-algebras, To appear in International Journal of Geometric Methods in Modern Physics (IJGMMP)
[18] Ternary Jordan derivations on \(C^*\)-ternary algebras, Journal of Computational Analysis and Applications, Volume 12 (2010), pp. 463-470
[19] Stability of an additive-cubic-quartic functional equation, Advances in Difference Equations. Article ID 395693 (2009), pp. 1-20
[20] Solution and stability of a mixed type additive, quadratic and cubic functional equation, Advances in difference equations, Article ID 826130, doi:10.1155/2009/826130. , Volume 2009 (2009), pp. 1-17
[21] On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abs. Appl. Anal. Article ID 923476 (2009), pp. 1-11
[22] Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis-TMA , Volume 71 (2009), pp. 5629-5643
[23] A trick for investigation of approximate derivations, Math. Commun. , Volume 15 (2010), pp. 99-105
[24] Quadratic double centralizers and quadratic multipliers, Advances in Difference Equations (in press)
[25] Generalized Hyers-Ulam stability of the generalized (n; k)-derivations , Abs. Appl. Anal., Article ID 437931, Volume 2009 (2009), pp. 1-8
[26] Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach, Internat. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 42-53
[27] On stability of additive mappings, Internat. J. Math. Sci. , Volume 14 (1991), pp. 431-434
[28] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl, Volume 184 (1994), pp. 431-436
[29] The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen. , Volume 48 (1996), pp. 217-235
[30] Stability of functional equations in several variables, Birkhaer, Basel, 1998
[31] On the stability of the linear functional equation, Proc. Natl. Acad. Sci, Volume 27 (1941), pp. 222-224
[32] On the Hyers-Ulam stability of \(\psi\)-additive mappings, J. Approx. Theory, Volume 72 (1993), pp. 131-137
[33] Almost derivations on the Banach algebra \(C^n[0, 1]\), Bull. Korean Math. Soc. , Volume 33 (1996), pp. 359-366
[34] Quadratic functional equation and inner product spaces, Results Math., Volume 27 (1995), pp. 368-372
[35] Fuzzy approximately additive mappings, Int. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 44-53
[36] Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 22-41
[37] Comment on Approximate ternary Jordan derivations on Banach ternary algebras [Bavand Savadkouhi et al. , J. Math. Phys. 50, 042303 (2009)], J. Math. Phys. , Volume 51 (2010), pp. 1-7
[38] Generalized additive functional inequalities in Banach algebras, Int. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 54-62
[39] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300
[40] Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129
[41] Problems in modern mathematics, Chapter VI, science ed., Wiley, New York, 1940
Cité par Sources :