ON THE STABILITY OF SOME QUADRATIC FUNCTIONAL EQUATION
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 50-59.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we establish the general solution of the functional equation which is closely associated with the quadratic functional equation and we investigate the Hyers-Ulam-Rassias stability of this equation in Banach spaces.
DOI : 10.22436/jnsa.004.01.05
Classification : 39B82, 39B52
Keywords: Quadratic functional equation, Hyers-Ulam-Rassias stability.

ADAM, M. 1

1 Department of Mathematics and informatics, School of Occupational Safety of Katowice, Bankowa 8, 40-007 Katowice, Poland
@article{JNSA_2011_4_1_a4,
     author = {ADAM, M.},
     title = {ON {THE} {STABILITY} {OF} {SOME} {QUADRATIC} {FUNCTIONAL} {EQUATION}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {50-59},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.22436/jnsa.004.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.05/}
}
TY  - JOUR
AU  - ADAM, M.
TI  - ON THE STABILITY OF SOME QUADRATIC FUNCTIONAL EQUATION
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 50
EP  - 59
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.05/
DO  - 10.22436/jnsa.004.01.05
LA  - en
ID  - JNSA_2011_4_1_a4
ER  - 
%0 Journal Article
%A ADAM, M.
%T ON THE STABILITY OF SOME QUADRATIC FUNCTIONAL EQUATION
%J Journal of nonlinear sciences and its applications
%D 2011
%P 50-59
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.05/
%R 10.22436/jnsa.004.01.05
%G en
%F JNSA_2011_4_1_a4
ADAM, M. ON THE STABILITY OF SOME QUADRATIC FUNCTIONAL EQUATION. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 50-59. doi : 10.22436/jnsa.004.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.05/

[1] Aczél, J.; Dhombres, J. Functional Equations in Several Variables, Cambridge Univ. Press, , 1989

[2] Amir, D. Characterizations of Inner Product Spaces, Birkhäuser, Basel, 1986

[3] T. Aoki On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan , Volume 2 (1950), pp. 64-66

[4] Cholewa, P. W. Remarks on the stability of functional equations, Aeq. Math. , Volume 27 (1984), pp. 76-86

[5] Czerwik, S. Functional equations and inequalities in several variables, World Scientific, New Jersey - London - Singapore - Hong Kong, 2002

[6] Czerwik, S. On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg , Volume 62 (1992), pp. 59-64

[7] Czerwik, S. Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003

[8] Czerwik, S. The stability of the quadratic functional equation, In: Stability of mappings of Hyers-Ulam type, (ed. Th. M. Rassias, J. Tabor), Hadronic Press, Palm Harbor, Florida (1994), pp. 81-91

[9] Gajda, Z. On stability of additive mappings, Internat. J. Math. & Math. Sci. , Volume 14 (1991), pp. 431-434

[10] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436

[11] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA , Volume 27 (1941), pp. 222-224

[12] Hyers, D. H.; Isac, G.; Rassias, Th. M. Stability of functional equations in several variables, Birkhäuser Verlag, , 1998

[13] Hyers, D. H.; Rassias, Th. M. Approximate homomorphisms, Aeq. Math. , Volume 44 (1992), pp. 125-153

[14] Jordan, P.; Neumann, J. von On inner products in linear metric spaces, Ann. of Math. , Volume 36 (1935), pp. 719-723

[15] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300

Cité par Sources :