Voir la notice de l'article provenant de la source International Scientific Research Publications
$cf (\sum^n_{ i=1} x_i) + \sum^n_{ j=2} f (\sum^n_{ i=1} x_i - (n + c - 1)x_j)\\ = (n + c - 1)(f(x_1) + c \sum^n _{i=2} f(x_i) + \sum^n_{ i$ |
SCHIN, SEUNG WON 1 ; KI, DOHYEONG 1 ; CHANG , JAEWON  1 ; KIM, MIN JUNE 1
@article{JNSA_2011_4_1_a3, author = {SCHIN, SEUNG WON and KI, DOHYEONG and CHANG , JAEWON and KIM, MIN JUNE}, title = {RANDOM {STABILITY} {OF} {QUADRATIC} {FUNCTIONAL} {EQUATIONS} {A} {FIXED} {POINT} {APPROACH}}, journal = {Journal of nonlinear sciences and its applications}, pages = {37-49}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2011}, doi = {10.22436/jnsa.004.01.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.04/} }
TY - JOUR AU - SCHIN, SEUNG WON AU - KI, DOHYEONG AU - CHANG , JAEWON AU - KIM, MIN JUNE TI - RANDOM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS A FIXED POINT APPROACH JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 37 EP - 49 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.04/ DO - 10.22436/jnsa.004.01.04 LA - en ID - JNSA_2011_4_1_a3 ER -
%0 Journal Article %A SCHIN, SEUNG WON %A KI, DOHYEONG %A CHANG , JAEWON %A KIM, MIN JUNE %T RANDOM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS A FIXED POINT APPROACH %J Journal of nonlinear sciences and its applications %D 2011 %P 37-49 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.04/ %R 10.22436/jnsa.004.01.04 %G en %F JNSA_2011_4_1_a3
SCHIN, SEUNG WON; KI, DOHYEONG; CHANG , JAEWON ; KIM, MIN JUNE. RANDOM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS A FIXED POINT APPROACH. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 37-49. doi : 10.22436/jnsa.004.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.04/
[1] Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989
[2] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66
[3] Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., , 2003
[4] On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., Volume 346 (2004), pp. 43-52
[5] Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, Art. ID 749392 , 2008
[6] Remarks on the stability of functional equations, Aequationes Math., Volume 27 (1984), pp. 76-86
[7] On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, Volume 62 (1992), pp. 59-64
[8] Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong , Singapore and London, 2002
[9] A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309
[10] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436
[11] Generalized Hyers-Ulam-Rassias theorem in Menger probabilistic normed spaces, Discrete Dynamics in Nature and Society, Art. ID 162371 , 2010
[12] Fixed Point Theory in PM Spaces, Kluwer Academic Publishers, Dordrecht, 2001
[13] Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetica, Volume 38 (2002), pp. 363-381
[14] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224
[15] Stability of Functional Equations in Several Variables, BirkhÄauser, Basel, 1998
[16] Stability of \(\psi\)-additive mappings: Appications to nonlinear analysis, Internat. J. Math. Math. Sci., Volume 19 (1996), pp. 219-228
[17] Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001
[18] The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, Volume 160 (2009), pp. 1663-1667
[19] On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 567-572
[20] The stability of the quartic functional equation in random normed spaces, Acta Appl. Math., Volume 110 (2010), pp. 797-803
[21] The stability of an additive functional equation in Menger probabilistic \(\varphi\)-normed spaces, Math. Slovak (in press)
[22] A fixed point approach to almost quartic mappings in quasi fuzzy normed spaces, Fuzzy Sets and Systems, Volume 160 (2009), pp. 1653-1662
[23] Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, Volume 159 (2008), pp. 730-738
[24] Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, Volume 159 (2008), pp. 720-729
[25] Fuzzy approximately cubic mappings, Inform. Sci., Volume 178 (2008), pp. 3791-3798
[26] Fuzzy stability of additive mappings in non- Archimedean fuzzy normed spaces, Fuzzy Sets and Systems, Volume 160 (2009), pp. 1643-1652
[27] A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., Volume 37 (2006), pp. 361-376
[28] Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications, Art. ID 50175 , 2007
[29] Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Applications , Art. ID 493751 , 2008
[30] The fixed point alternative and the stability of functional equations, Fixed Point Theory, Volume 4 (2003), pp. 91-96
[31] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[32] Problem 16, 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math., Volume 39 (1990), pp. 292-293
[33] On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai, XLIII (1998), pp. 89-124
[34] The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., Volume 246 (2000), pp. 352-378
[35] On the stability of functional equations and a problem of Ulam, Acta Appl. Math., Volume 62 (2000), pp. 23-130
[36] On the behaviour of mappings which do not satisfy Hyers- Ulam stability , Proc. Amer. Math. Soc., Volume 114 (1992), pp. 989-993
[37] On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., Volume 173 (1993), pp. 325-338
[38] Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl., Volume 228 (1998), pp. 234-253
[39] Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983
[40] On the notion of a random normed space, Dokl. Akad. Nauk SSSR, Volume 149 (1963), pp. 280-283
[41] Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129
[42] A Collection of the Mathematical Problems , Interscience Publ., New York, 1960
Cité par Sources :