RANDOM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS A FIXED POINT APPROACH
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 37-49.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Using the fixed point method, we prove the generalized Hyers- Ulam stability of the following quadratic functional equations
$cf (\sum^n_{ i=1} x_i) + \sum^n_{ j=2} f (\sum^n_{ i=1} x_i - (n + c - 1)x_j)\\ = (n + c - 1)(f(x_1) + c \sum^n _{i=2} f(x_i) + \sum^n_{ i$
in random Banach spaces.
DOI : 10.22436/jnsa.004.01.04
Classification : 46S50, 46C05, 39B52, 47H10
Keywords: random Banach space, fixed point, quadratic functional equation, generalized Hyers-Ulam stability.

SCHIN, SEUNG WON 1 ; KI, DOHYEONG 1 ; CHANG , JAEWON  1 ; KIM, MIN JUNE 1

1 Seoul Science High School, Seoul 110-530, Republic of Korea
@article{JNSA_2011_4_1_a3,
     author = {SCHIN, SEUNG WON and KI, DOHYEONG and CHANG , JAEWON  and KIM, MIN JUNE},
     title = {RANDOM {STABILITY} {OF} {QUADRATIC} {FUNCTIONAL} {EQUATIONS} {A} {FIXED} {POINT} {APPROACH}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {37-49},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.22436/jnsa.004.01.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.04/}
}
TY  - JOUR
AU  - SCHIN, SEUNG WON
AU  - KI, DOHYEONG
AU  - CHANG , JAEWON 
AU  - KIM, MIN JUNE
TI  - RANDOM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS A FIXED POINT APPROACH
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 37
EP  - 49
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.04/
DO  - 10.22436/jnsa.004.01.04
LA  - en
ID  - JNSA_2011_4_1_a3
ER  - 
%0 Journal Article
%A SCHIN, SEUNG WON
%A KI, DOHYEONG
%A CHANG , JAEWON 
%A KIM, MIN JUNE
%T RANDOM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS A FIXED POINT APPROACH
%J Journal of nonlinear sciences and its applications
%D 2011
%P 37-49
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.04/
%R 10.22436/jnsa.004.01.04
%G en
%F JNSA_2011_4_1_a3
SCHIN, SEUNG WON; KI, DOHYEONG; CHANG , JAEWON ; KIM, MIN JUNE. RANDOM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS A FIXED POINT APPROACH. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 37-49. doi : 10.22436/jnsa.004.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.04/

[1] Aczel, J.; Dhombres, J. Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989

[2] T. Aoki On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[3] Cădariu, L.; Radu, V. Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., , 2003

[4] Cădariu, L.; Radu, V. On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., Volume 346 (2004), pp. 43-52

[5] Cădariu, L.; Radu, V. Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, Art. ID 749392 , 2008

[6] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math., Volume 27 (1984), pp. 76-86

[7] Czerwik, S. On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, Volume 62 (1992), pp. 59-64

[8] Czerwik, P. Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong , Singapore and London, 2002

[9] Diaz, J.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309

[10] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[11] Gordji, M. E.; Ghaemi, M. B.; H. Hajani Generalized Hyers-Ulam-Rassias theorem in Menger probabilistic normed spaces, Discrete Dynamics in Nature and Society, Art. ID 162371 , 2010

[12] Hadžić, O.; Pap, E. Fixed Point Theory in PM Spaces, Kluwer Academic Publishers, Dordrecht, 2001

[13] Hadžić, O.; Pap, E.; Budincević, M. Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetica, Volume 38 (2002), pp. 363-381

[14] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224

[15] Hyers, D. H.; Isac, G.; Rassias, Th. M. Stability of Functional Equations in Several Variables, BirkhÄauser, Basel, 1998

[16] Isac, G.; Rassias, Th. M. Stability of \(\psi\)-additive mappings: Appications to nonlinear analysis, Internat. J. Math. Math. Sci., Volume 19 (1996), pp. 219-228

[17] S. Jung Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001

[18] Miheţ, D. The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, Volume 160 (2009), pp. 1663-1667

[19] Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 567-572

[20] Miheţ, D.; Saadati, R.; Vaezpour, S. M. The stability of the quartic functional equation in random normed spaces, Acta Appl. Math., Volume 110 (2010), pp. 797-803

[21] Miheţ, D.; Saadati, R.; Vaezpour, S. M. The stability of an additive functional equation in Menger probabilistic \(\varphi\)-normed spaces, Math. Slovak (in press)

[22] Mirmostafaee, A. K. A fixed point approach to almost quartic mappings in quasi fuzzy normed spaces, Fuzzy Sets and Systems, Volume 160 (2009), pp. 1653-1662

[23] Mirmostafaee, A. K.; Mirzavaziri, M.; Moslehian, M. S. Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, Volume 159 (2008), pp. 730-738

[24] Mirmostafaee, A. K.; Moslehian, M. S. Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, Volume 159 (2008), pp. 720-729

[25] Mirmostafaee, A. K.; Moslehian, M. S. Fuzzy approximately cubic mappings, Inform. Sci., Volume 178 (2008), pp. 3791-3798

[26] Mirmostafaee, A. K.; Moslehian, M. S. Fuzzy stability of additive mappings in non- Archimedean fuzzy normed spaces, Fuzzy Sets and Systems, Volume 160 (2009), pp. 1643-1652

[27] Mirzavaziri, M.; Moslehian, M. S. A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., Volume 37 (2006), pp. 361-376

[28] Park, C. Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications, Art. ID 50175 , 2007

[29] Park, C. Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Applications , Art. ID 493751 , 2008

[30] Radu, V. The fixed point alternative and the stability of functional equations, Fixed Point Theory, Volume 4 (2003), pp. 91-96

[31] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[32] Th. M. Rassias Problem 16, 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math., Volume 39 (1990), pp. 292-293

[33] Rassias, Th. M. On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai, XLIII (1998), pp. 89-124

[34] Rassias, Th. M. The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., Volume 246 (2000), pp. 352-378

[35] Rassias, Th. M. On the stability of functional equations and a problem of Ulam, Acta Appl. Math., Volume 62 (2000), pp. 23-130

[36] Rassias, Th. M.; ·Semrl, P. On the behaviour of mappings which do not satisfy Hyers- Ulam stability , Proc. Amer. Math. Soc., Volume 114 (1992), pp. 989-993

[37] Rassias, Th. M.; ·Semrl, P. On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., Volume 173 (1993), pp. 325-338

[38] Rassias, Th. M.; K. Shibata Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl., Volume 228 (1998), pp. 234-253

[39] Schweizer, B.; Sklar, A. Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983

[40] Šerstnev, A. N. On the notion of a random normed space, Dokl. Akad. Nauk SSSR, Volume 149 (1963), pp. 280-283

[41] Skof, F. Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129

[42] Ulam, S. M. A Collection of the Mathematical Problems , Interscience Publ., New York, 1960

Cité par Sources :