ISOMORPHISMS AND GENERALIZED DERIVATIONS IN PROPER $CQ^*$-ALGEBRAS
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 19-36.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove the Hyers-Ulam-Rassias stability of homomorphisms in proper $CQ^*$-algebras and of generalized derivations on proper $CQ^*$-algebras for the following Cauchy-Jensen additive mappings:
$f (\frac{ x + y + z}{ 2 }) + f (\frac{ x - y + z}{ 2}) = f(x) + f(z),$
$f (\frac{ x + y + z}{ 2 }) - f (\frac{ x - y + z}{ 2}) = f(y),$
$2f (\frac{ x + y + z}{ 2 }) = f(x)+f(y)+f(z),$
which were introduced and investigated in [3, 30]. This is applied to investigate isomorphisms in proper $CQ^*$-algebras.
DOI : 10.22436/jnsa.004.01.03
Classification : 39B72, 17A40, 46L05, 46B03, 47Jxx
Keywords: Hyers-Ulam-Rassias stability, Cauchy-Jensen functional equation, proper \(CQ^*\)-algebra isomorphism, generalized derivation.

PARK , CHOONKIL  1 ; BOO, DEOK-HOON 2

1 Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133--791, South Korea
2 Department of Mathematics, Chungnam National University, Daejeon 305--764, South Korea
@article{JNSA_2011_4_1_a2,
     author = {PARK , CHOONKIL  and BOO, DEOK-HOON},
     title = {ISOMORPHISMS {AND} {GENERALIZED} {DERIVATIONS} {IN} {PROPER} {\(CQ^*\)-ALGEBRAS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {19-36},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.22436/jnsa.004.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.03/}
}
TY  - JOUR
AU  - PARK , CHOONKIL 
AU  - BOO, DEOK-HOON
TI  - ISOMORPHISMS AND GENERALIZED DERIVATIONS IN PROPER \(CQ^*\)-ALGEBRAS
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 19
EP  - 36
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.03/
DO  - 10.22436/jnsa.004.01.03
LA  - en
ID  - JNSA_2011_4_1_a2
ER  - 
%0 Journal Article
%A PARK , CHOONKIL 
%A BOO, DEOK-HOON
%T ISOMORPHISMS AND GENERALIZED DERIVATIONS IN PROPER \(CQ^*\)-ALGEBRAS
%J Journal of nonlinear sciences and its applications
%D 2011
%P 19-36
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.03/
%R 10.22436/jnsa.004.01.03
%G en
%F JNSA_2011_4_1_a2
PARK , CHOONKIL ; BOO, DEOK-HOON. ISOMORPHISMS AND GENERALIZED DERIVATIONS IN PROPER \(CQ^*\)-ALGEBRAS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 19-36. doi : 10.22436/jnsa.004.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.03/

[1] Antoine, J. P.; Inoue, A.; Trapani, C. \(O^*\)-dynamical systems and *-derivations of unbounded operator algebras, Math. Nachr. , Volume 204 (1999), pp. 5-28

[2] Antoine, J. P.; Inoue, A.; Trapani, C. Partial *-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002

[3] Baak, C. Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces , Acta Math. Sinica., Volume 22 (2006), pp. 1789-1796

[4] Bagarello, F. Applications of topological *-algebras of unbounded operators, J. Math. Phys., Volume 39 (1998), pp. 6091-6105

[5] Bagarello, F.; Inoue, A.; Trapani, C. Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 2973-2980

[6] Bagarello, F.; Inoue, A.; Trapani, C. *-Derivations of quasi-*-algebras, Internat. J. Math. Math. Sci., Volume 21 (2004), pp. 1077-1096

[7] Bagarello, F.; Inoue, A.; Trapani, C. Exponentiating derivations of quasi-*-algebras: possible approaches and applications, Internat. J. Math. Math. Sci., Volume 2005 (2005), pp. 2805-2820

[8] Bagarello, F.; Trapani, C. States and representations of \(CQ^*\)-algebras, Ann. Inst. H. Poincare, Volume 61 (1994), pp. 103-133

[9] Bagarello, F.; Trapani, C. \(CQ^*\)-algebras: structure properties, Publ. RIMS Kyoto Univ., Volume 32 (1996), pp. 85-116

[10] Czerwik, S. Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002

[11] Czerwik, S. Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003

[12] Rostami, R. Farokhzad; Hosseinioun, S. A. R. Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach, Internat. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 42-53

[13] Fleming, R. J.; Jamison, J. E. Isometries on Banach Spaces: Function Spaces, Monographs and Surveys in Pure and Applied Mathematics Vol. 129, Chapman & Hall/CRC, Boca Raton, London, New York and Washington D.C., 2003

[14] Gajda, Z. On stability of additive mappings, Int. J. Math. Math. Sci. , Volume 14 (1991), pp. 431-434

[15] Gavruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[16] Ghobadipour, N.; Park, C. Cubic-quartic functional equations in fuzzy normed spaces, Internat. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 12-21

[17] Gordji, M. E.; Gharetapeh, S. K.; Rassias, J. M.; Zolfaghari, S. Solution and stability of a mixed type additive, quadratic and cubic functional equation, Advances in Difference Equations , Art. ID 826130, 2009

[18] Gordji, M. E.; Rassias, J. M.; Ghobadipour, N. Generalized Hyers-Ulam stability of generalized (N;K)-derivations, Abstract and Applied Analysis , Art. ID 437931, 2009

[19] Gordji, M. E.; Zolfaghari, S.; Rassias, J. M.; Savadkouhi, M. B. Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abstract and Applied Analysis, Art. ID 417473, 2009

[20] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224

[21] Hyers, D. H.; Isac, G.; Rassias, Th. M. Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998

[22] Hyers, D. H.; Rassias, Th. M. Approximate homomorphisms , Aequationes Math., Volume 44 (1992), pp. 125-153

[23] Jung, S. Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3137-3143

[24] Jung, S.; Rassias, J. M. A fixed point approach to the stability of a functional equation of the spiral of Theodorus, Fixed Point Theory and Applications, Art. ID 945010, 2008

[25] Khodaei, H.; Rassias, Th. Approximately generalized additive functions in several variables, Internat. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 22-41

[26] Park, C. On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., Volume 275 (2002), pp. 711-720

[27] Park, C. Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc., Volume 36 (2005), pp. 79-97

[28] Park, C. Homomorphisms between Lie \(JC^*\)-algebras and Cauchy-Rassias stability of Lie \(JC^*\)-algebra derivations, J. Lie Theory, Volume 15 (2005), pp. 393-414

[29] Park, C. Isomorphisms between unital \(C^*\)-algebras, J. Math. Anal. Appl., Volume 307 (2005), pp. 753-762

[30] Park, C. Isomorphisms between \(C^*\)-ternary algebras, J. Math. Phys., Art. ID 103512, 2006

[31] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., Volume 46 (1982), pp. 126-130

[32] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., Volume 108 (1984), pp. 445-446

[33] Rassias, J. M. Solution of a problem of Ulam , J. Approx. Theory, Volume 57 (1989), pp. 268-273

[34] Rassias, J. M. Solution of a stability problem of Ulam, Discuss. Math., Volume 12 (1992), pp. 95-103

[35] Rassias, J. M. Solution of the Ulam stability problem for quartic mappings, Glasnik Matem- aticki, Volume 34 (1999), pp. 243-252

[36] J. M. Rassias Solution of the Ulam stability problem for cubic mappings, Glasnik Matematicki, Volume 36 (2001), pp. 63-72

[37] Rassias, J. M.; M. J. Rassias Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. , Volume 129 (2005), pp. 545-558

[38] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[39] Rassias, Th. M. Problem 16, Report of the 27th International Symp. on Functional Equations, Aequationes Math., Volume 39 (1990), pp. 292-293

[40] Rassias, Th. M. The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., Volume 246 (2000), pp. 352-378

[41] Rassias, Th. M. On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., Volume 251 (2000), pp. 264-284

[42] Rassias, Th. M. On the stability of functional equations and a problem of Ulam, Acta Appl. Math., Volume 62 (2000), pp. 23-130

[43] Rassias, Th. M. Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003

[44] Rassias, Th. M.; P. ·Semrl On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., Volume 173 (1993), pp. 325-338

[45] Skof, F. Proprietµa locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129

[46] Trapani, C. Quasi-*-algebras of operators and their applications, Rev. Math. Phys., Volume 7 (1995), pp. 1303-1332

[47] Trapani, C. Some seminorms on quasi-*-algebras, Studia Math., Volume 158 (2003), pp. 99-115

[48] Trapani, C. Bounded elements and spectrum in Banach quasi *-algebras, Studia Math., Volume 172 (2006), pp. 249-273

[49] Ulam, S. M. Problems in Modern Mathematics, Wiley, New York, 1960

Cité par Sources :