Voir la notice de l'article provenant de la source International Scientific Research Publications
$f (\frac{ x + y + z}{ 2 }) + f (\frac{ x - y + z}{ 2}) = f(x) + f(z),$ |
$f (\frac{ x + y + z}{ 2 }) - f (\frac{ x - y + z}{ 2}) = f(y),$ |
$2f (\frac{ x + y + z}{ 2 }) = f(x)+f(y)+f(z),$ |
PARK , CHOONKIL  1 ; BOO, DEOK-HOON 2
@article{JNSA_2011_4_1_a2, author = {PARK , CHOONKIL and BOO, DEOK-HOON}, title = {ISOMORPHISMS {AND} {GENERALIZED} {DERIVATIONS} {IN} {PROPER} {\(CQ^*\)-ALGEBRAS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {19-36}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2011}, doi = {10.22436/jnsa.004.01.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.03/} }
TY - JOUR AU - PARK , CHOONKIL AU - BOO, DEOK-HOON TI - ISOMORPHISMS AND GENERALIZED DERIVATIONS IN PROPER \(CQ^*\)-ALGEBRAS JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 19 EP - 36 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.03/ DO - 10.22436/jnsa.004.01.03 LA - en ID - JNSA_2011_4_1_a2 ER -
%0 Journal Article %A PARK , CHOONKIL %A BOO, DEOK-HOON %T ISOMORPHISMS AND GENERALIZED DERIVATIONS IN PROPER \(CQ^*\)-ALGEBRAS %J Journal of nonlinear sciences and its applications %D 2011 %P 19-36 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.03/ %R 10.22436/jnsa.004.01.03 %G en %F JNSA_2011_4_1_a2
PARK , CHOONKIL ; BOO, DEOK-HOON. ISOMORPHISMS AND GENERALIZED DERIVATIONS IN PROPER \(CQ^*\)-ALGEBRAS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 19-36. doi : 10.22436/jnsa.004.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.03/
[1] \(O^*\)-dynamical systems and *-derivations of unbounded operator algebras, Math. Nachr. , Volume 204 (1999), pp. 5-28
[2] Partial *-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002
[3] Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces , Acta Math. Sinica., Volume 22 (2006), pp. 1789-1796
[4] Applications of topological *-algebras of unbounded operators, J. Math. Phys., Volume 39 (1998), pp. 6091-6105
[5] Some classes of topological quasi *-algebras, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 2973-2980
[6] *-Derivations of quasi-*-algebras, Internat. J. Math. Math. Sci., Volume 21 (2004), pp. 1077-1096
[7] Exponentiating derivations of quasi-*-algebras: possible approaches and applications, Internat. J. Math. Math. Sci., Volume 2005 (2005), pp. 2805-2820
[8] States and representations of \(CQ^*\)-algebras, Ann. Inst. H. Poincare, Volume 61 (1994), pp. 103-133
[9] \(CQ^*\)-algebras: structure properties, Publ. RIMS Kyoto Univ., Volume 32 (1996), pp. 85-116
[10] Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, 2002
[11] Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, Florida, 2003
[12] Perturbations of Jordan higher derivations in Banach ternary algebras: An alternative fixed point approach, Internat. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 42-53
[13] Isometries on Banach Spaces: Function Spaces, Monographs and Surveys in Pure and Applied Mathematics Vol. 129, Chapman & Hall/CRC, Boca Raton, London, New York and Washington D.C., 2003
[14] On stability of additive mappings, Int. J. Math. Math. Sci. , Volume 14 (1991), pp. 431-434
[15] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436
[16] Cubic-quartic functional equations in fuzzy normed spaces, Internat. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 12-21
[17] Solution and stability of a mixed type additive, quadratic and cubic functional equation, Advances in Difference Equations , Art. ID 826130, 2009
[18] Generalized Hyers-Ulam stability of generalized (N;K)-derivations, Abstract and Applied Analysis , Art. ID 437931, 2009
[19] Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abstract and Applied Analysis, Art. ID 417473, 2009
[20] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224
[21] Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998
[22] Approximate homomorphisms , Aequationes Math., Volume 44 (1992), pp. 125-153
[23] Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3137-3143
[24] A fixed point approach to the stability of a functional equation of the spiral of Theodorus, Fixed Point Theory and Applications, Art. ID 945010, 2008
[25] Approximately generalized additive functions in several variables, Internat. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 22-41
[26] On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl., Volume 275 (2002), pp. 711-720
[27] Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc., Volume 36 (2005), pp. 79-97
[28] Homomorphisms between Lie \(JC^*\)-algebras and Cauchy-Rassias stability of Lie \(JC^*\)-algebra derivations, J. Lie Theory, Volume 15 (2005), pp. 393-414
[29] Isomorphisms between unital \(C^*\)-algebras, J. Math. Anal. Appl., Volume 307 (2005), pp. 753-762
[30] Isomorphisms between \(C^*\)-ternary algebras, J. Math. Phys., Art. ID 103512, 2006
[31] On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., Volume 46 (1982), pp. 126-130
[32] On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., Volume 108 (1984), pp. 445-446
[33] Solution of a problem of Ulam , J. Approx. Theory, Volume 57 (1989), pp. 268-273
[34] Solution of a stability problem of Ulam, Discuss. Math., Volume 12 (1992), pp. 95-103
[35] Solution of the Ulam stability problem for quartic mappings, Glasnik Matem- aticki, Volume 34 (1999), pp. 243-252
[36] Solution of the Ulam stability problem for cubic mappings, Glasnik Matematicki, Volume 36 (2001), pp. 63-72
[37] Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. , Volume 129 (2005), pp. 545-558
[38] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[39] Problem 16, Report of the 27th International Symp. on Functional Equations, Aequationes Math., Volume 39 (1990), pp. 292-293
[40] The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., Volume 246 (2000), pp. 352-378
[41] On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., Volume 251 (2000), pp. 264-284
[42] On the stability of functional equations and a problem of Ulam, Acta Appl. Math., Volume 62 (2000), pp. 23-130
[43] Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003
[44] On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl., Volume 173 (1993), pp. 325-338
[45] Proprietµa locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129
[46] Quasi-*-algebras of operators and their applications, Rev. Math. Phys., Volume 7 (1995), pp. 1303-1332
[47] Some seminorms on quasi-*-algebras, Studia Math., Volume 158 (2003), pp. 99-115
[48] Bounded elements and spectrum in Banach quasi *-algebras, Studia Math., Volume 172 (2006), pp. 249-273
[49] Problems in Modern Mathematics, Wiley, New York, 1960
Cité par Sources :