Voir la notice de l'article provenant de la source International Scientific Research Publications
$f (\frac{x + y}{ 2})^2 = f(x)f(y),$ |
KIM, GWANG HUI 1
@article{JNSA_2011_4_1_a1, author = {KIM, GWANG HUI}, title = {STABILITY {OF} {THE} {LOBACEVSKI} {EQUATION}}, journal = {Journal of nonlinear sciences and its applications}, pages = {11-18}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2011}, doi = {10.22436/jnsa.004.01.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.02/} }
TY - JOUR AU - KIM, GWANG HUI TI - STABILITY OF THE LOBACEVSKI EQUATION JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 11 EP - 18 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.02/ DO - 10.22436/jnsa.004.01.02 LA - en ID - JNSA_2011_4_1_a1 ER -
KIM, GWANG HUI. STABILITY OF THE LOBACEVSKI EQUATION. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 11-18. doi : 10.22436/jnsa.004.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.02/
[1] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japen, Volume 2 (1950), pp. 64-66
[2] On the stability of cosine functional equation, Rocznik Naukowo-Dydak., Prace Mat., Volume 15 (1998), pp. 1-14
[3] On some trigonometric functional inequalities, Functional Equations- Results and Advances (2002), pp. 3-15
[4] The stability of the cosine equation, Proc. Amer. Math. Soc., Volume 80 (1980), pp. 411-416
[5] The stability of the equation f(x + y) = f(x)f(y), Proc. Amer. Math. Soc., Volume 74 (1979), pp. 242-246
[6] Multiplicative transformations, Proc. Nat. Academy Sci. of U.S.A., Volume 36 (1950), pp. 564-570
[7] The stability of the sine equation, Proc. Amer. Math. Soc., Volume 88 (1983), pp. 631-634
[8] Hyers-Ulam stability of functional equations in several variables, Aequationes Mathematicae.
[9] A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mapping, Journal of Mathematical Analysis and Applications , Volume 184 (1994), pp. 431-436
[10] On the stability of some functional equation, Stability of Mappings of Hyers- Ulam Type, Hardronic Press (1994), pp. 93-98
[11] Superstability is not natural, Roczik Naukowo-Dydaktyczny WSP w Krakowie, Prace Mat., Volume 159 (1993), pp. 109-123
[12] On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA., Volume 27 (1941), pp. 222-224
[13] On the stability of the generalized cosine functional equations, Ann. Acad. Paedagog. Crac. Stud. Math., Volume 1 (2001), pp. 49-58
[14] A generalization of Hyers-Ulam-Rassias Stability of the G-Functional Equation, Math. Ineq. & Appl., Volume 10 (2007), p. 351-58
[15] The Stability of the d'Alembert and Jensen type functional equations, Jour. Math. Anal & Appl., Volume 325 (2007), pp. 237-248
[16] A Stability of the generalized sine functional equations, Jour. Math. Anal & Appl., Volume 331 (2007), pp. 886-894
[17] On The Hyers-Ulam-Rassias Stability of a Pexiderizes Mixes Type Quadratic functional equation, J. Chungcheong Math. Soc., Volume 20 (2007), pp. 117-137
[18] On the Hyers-Ulam-Rassias stability of functional equations in n-variables, Jour. Math. Anal & Appl., Volume 299 (2004), pp. 375-391
[19] A generlization of the Hyers- Ulam-Rassia Stability of the beta functional equation, Publ. Mathematics, Volume 59 (2001), pp. 111-119
[20] Modified Hyers-Ulam-Rassias Stability of functional equations with square-symmetric Operation, Comm. Korean Math. Soc., Volume 16 (2001), pp. 211-223
[21] On the Modified Hyers-Ulam-Rassias stability of the equation \(f(x^2 -y^2 +rxy) = f(x^2) - f(y^2) + rf(xy)\), J. Chungcheong Math. Soc., Volume 10 (1997), pp. 109-116
[22] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300
[23] On a Modified Hyers-Ulam Sequence, Jour. Math. Anal & Appl. , Volume 158 (1991), pp. 106-113
[24] On the Behavior of Mappings Which Do Not Satisfy Hyers-Ulam Stability, Proc. Amer. Math. Soc., Volume 114 (1992), pp. 989-993
[25] On the Hyers-Ulam Stability of Linear Mappings, Jour. Math. Anal & Appl., Volume 173 (1993), pp. 325-338
[26] Th. M. Rassias, On the stability of functional equations in Banach spaces, Jour. Math. Anal & Appl., Volume 251 (2000), pp. 264-284
[27] The Problem of S. M. Ulam for Approximately Multiplicative Mappings, Jour. Math. Anal & Appl., Volume 246 (2000), pp. 352-378
[28] Problems in Modern Mathematics, Chap. VI, Science editions, Wiley, New York, 1964
Cité par Sources :