STABILITY OF THE LOBACEVSKI EQUATION
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 11-18.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this paper is to investigate the superstability of the Lobacevski equation
$f (\frac{x + y}{ 2})^2 = f(x)f(y),$
which is bounded by the unknown functions $\varphi(x)$ or $\varphi(y)$. The obtained result is a generalization of P. G·avruta's result in 1994.
DOI : 10.22436/jnsa.004.01.02
Classification : 39B82, 39B52
Keywords: Hyers-Ulam-Rassias stability, superstability, Lobacevski equation, d'Alembert functional equation, sine functional equation.

KIM, GWANG HUI 1

1 Department of Mathematics, Kangnam University, Yongin, Gyeonggi 446-702, Republic of Korea
@article{JNSA_2011_4_1_a1,
     author = {KIM, GWANG HUI},
     title = {STABILITY {OF} {THE} {LOBACEVSKI} {EQUATION}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {11-18},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.22436/jnsa.004.01.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.02/}
}
TY  - JOUR
AU  - KIM, GWANG HUI
TI  - STABILITY OF THE LOBACEVSKI EQUATION
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 11
EP  - 18
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.02/
DO  - 10.22436/jnsa.004.01.02
LA  - en
ID  - JNSA_2011_4_1_a1
ER  - 
%0 Journal Article
%A KIM, GWANG HUI
%T STABILITY OF THE LOBACEVSKI EQUATION
%J Journal of nonlinear sciences and its applications
%D 2011
%P 11-18
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.02/
%R 10.22436/jnsa.004.01.02
%G en
%F JNSA_2011_4_1_a1
KIM, GWANG HUI. STABILITY OF THE LOBACEVSKI EQUATION. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 11-18. doi : 10.22436/jnsa.004.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.02/

[1] Aoki, T. On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japen, Volume 2 (1950), pp. 64-66

[2] Badora, R. On the stability of cosine functional equation, Rocznik Naukowo-Dydak., Prace Mat., Volume 15 (1998), pp. 1-14

[3] Badora, R.; Ger, R. On some trigonometric functional inequalities, Functional Equations- Results and Advances (2002), pp. 3-15

[4] Baker, J. A. The stability of the cosine equation, Proc. Amer. Math. Soc., Volume 80 (1980), pp. 411-416

[5] Baker, J.; Lawrence, J.; Zorzitto, F. The stability of the equation f(x + y) = f(x)f(y), Proc. Amer. Math. Soc., Volume 74 (1979), pp. 242-246

[6] Bourgin, D. G. Multiplicative transformations, Proc. Nat. Academy Sci. of U.S.A., Volume 36 (1950), pp. 564-570

[7] Cholewa, P. W. The stability of the sine equation, Proc. Amer. Math. Soc., Volume 88 (1983), pp. 631-634

[8] Forti, G. L. Hyers-Ulam stability of functional equations in several variables, Aequationes Mathematicae.

[9] Gavruta, P. A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mapping, Journal of Mathematical Analysis and Applications , Volume 184 (1994), pp. 431-436

[10] Gavruta, P. On the stability of some functional equation, Stability of Mappings of Hyers- Ulam Type, Hardronic Press (1994), pp. 93-98

[11] Ger, R. Superstability is not natural, Roczik Naukowo-Dydaktyczny WSP w Krakowie, Prace Mat., Volume 159 (1993), pp. 109-123

[12] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA., Volume 27 (1941), pp. 222-224

[13] Kannappan, Pl.; Kim, G. H. On the stability of the generalized cosine functional equations, Ann. Acad. Paedagog. Crac. Stud. Math., Volume 1 (2001), pp. 49-58

[14] Kim, G. H. A generalization of Hyers-Ulam-Rassias Stability of the G-Functional Equation, Math. Ineq. & Appl., Volume 10 (2007), p. 351-58

[15] The Stability of the d'Alembert and Jensen type functional equations, Jour. Math. Anal & Appl., Volume 325 (2007), pp. 237-248

[16] A Stability of the generalized sine functional equations, Jour. Math. Anal & Appl., Volume 331 (2007), pp. 886-894

[17] Jun, K. W.; Lee, Y. H. On The Hyers-Ulam-Rassias Stability of a Pexiderizes Mixes Type Quadratic functional equation, J. Chungcheong Math. Soc., Volume 20 (2007), pp. 117-137

[18] On the Hyers-Ulam-Rassias stability of functional equations in n-variables, Jour. Math. Anal & Appl., Volume 299 (2004), pp. 375-391

[19] A generlization of the Hyers- Ulam-Rassia Stability of the beta functional equation, Publ. Mathematics, Volume 59 (2001), pp. 111-119

[20] Lee, Y. W.; Ji, K. S. Modified Hyers-Ulam-Rassias Stability of functional equations with square-symmetric Operation, Comm. Korean Math. Soc., Volume 16 (2001), pp. 211-223

[21] On the Modified Hyers-Ulam-Rassias stability of the equation \(f(x^2 -y^2 +rxy) = f(x^2) - f(y^2) + rf(xy)\), J. Chungcheong Math. Soc., Volume 10 (1997), pp. 109-116

[22] Th. M. Rassias On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300

[23] On a Modified Hyers-Ulam Sequence, Jour. Math. Anal & Appl. , Volume 158 (1991), pp. 106-113

[24] Semrl, P. On the Behavior of Mappings Which Do Not Satisfy Hyers-Ulam Stability, Proc. Amer. Math. Soc., Volume 114 (1992), pp. 989-993

[25] On the Hyers-Ulam Stability of Linear Mappings, Jour. Math. Anal & Appl., Volume 173 (1993), pp. 325-338

[26] Th. M. Rassias, On the stability of functional equations in Banach spaces, Jour. Math. Anal & Appl., Volume 251 (2000), pp. 264-284

[27] The Problem of S. M. Ulam for Approximately Multiplicative Mappings, Jour. Math. Anal & Appl., Volume 246 (2000), pp. 352-378

[28] Ulam, S. M. Problems in Modern Mathematics, Chap. VI, Science editions, Wiley, New York, 1964

Cité par Sources :