TERNARY JORDAN HOMOMORPHISMS IN $C^*$-TERNARY ALGEBRAS
Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 1-10.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this note, we prove the Hyers-Ulam-Rassias stability of Jordan homomorphisms in $C^*$-ternary algebras for the following generalized Cauchy- Jensen additive mapping:
$rf( \frac{s \Sigma^p_{ j=1} x_j + t \Sigma^d_{ j=1} x_j}{ r} ) = s \Sigma^p_{ j=1} f(x_j) + t \Sigma^d_{ j=1} f(x_j)$
and generalize some results concerning this functional equation.
DOI : 10.22436/jnsa.004.01.01
Classification : 39B52, 39B82, 46B99, 17A40
Keywords: Hyers-Ulam-Rassias stability, \(C^*\)-ternary algebra.

KABOLI GHARETAPEH, S. 1 ; ESHAGHI GORDJI, MADJID 2 ; GHAEMI , M. B.  3 ; RASHIDI, E. 2

1 Department of Mathematics, Payame Noor University, Mashhad Branch, Mashhad, Iran
2 Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
3 Department of Mathematics, Iran University of Science and Technology, Tehran, Iran
@article{JNSA_2011_4_1_a0,
     author = {KABOLI GHARETAPEH, S. and ESHAGHI GORDJI, MADJID and GHAEMI , M. B.  and RASHIDI, E.},
     title = {TERNARY {JORDAN} {HOMOMORPHISMS} {IN} {\(C^*\)-TERNARY} {ALGEBRAS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1-10},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2011},
     doi = {10.22436/jnsa.004.01.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.01/}
}
TY  - JOUR
AU  - KABOLI GHARETAPEH, S.
AU  - ESHAGHI GORDJI, MADJID
AU  - GHAEMI , M. B. 
AU  - RASHIDI, E.
TI  - TERNARY JORDAN HOMOMORPHISMS IN \(C^*\)-TERNARY ALGEBRAS
JO  - Journal of nonlinear sciences and its applications
PY  - 2011
SP  - 1
EP  - 10
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.01/
DO  - 10.22436/jnsa.004.01.01
LA  - en
ID  - JNSA_2011_4_1_a0
ER  - 
%0 Journal Article
%A KABOLI GHARETAPEH, S.
%A ESHAGHI GORDJI, MADJID
%A GHAEMI , M. B. 
%A RASHIDI, E.
%T TERNARY JORDAN HOMOMORPHISMS IN \(C^*\)-TERNARY ALGEBRAS
%J Journal of nonlinear sciences and its applications
%D 2011
%P 1-10
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.01/
%R 10.22436/jnsa.004.01.01
%G en
%F JNSA_2011_4_1_a0
KABOLI GHARETAPEH, S.; ESHAGHI GORDJI, MADJID; GHAEMI , M. B. ; RASHIDI, E. TERNARY JORDAN HOMOMORPHISMS IN \(C^*\)-TERNARY ALGEBRAS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 1-10. doi : 10.22436/jnsa.004.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.01/

[1] Abramov, V.; Kerner, R.; Roy, B. Le Hypersymmetry: a \(Z_3\) graded generalization of supersymmetry, J. Math. Phys., Volume 38 (1997), pp. 1650-1669

[2] Aczel, J.; Dhombres, J. Functional Equations in Several Variables, Cambridge Univ. Press, , 1989

[3] Aoki, T. On the stability of the linear transformationin Banach spaces, J. Math. Soc. Japan , Volume 2 (1950), pp. 64-66

[4] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math. , Volume 27 (1984), pp. 76-86

[5] Czerwik, S. On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, Volume 62 (1992), pp. 59-64

[6] Czerwik, S. Functional Equations and Inequalities in Several Variables, World Scientific, London , 2002

[7] Ebadian, A.; Najati, A.; Gordji, M. Eshaghi On approximate additive-quartic and quadratic-cubic functional equations in two variables on abelian groups, Results. Math, DOI 10.1007/s00025-010-0018-4 , 2010

[8] Gordji, M. Eshaghi; Ghaemi, M. B.; Gharetapeh, S. Kaboli; Shams, S.; A. Ebadian On the stability of \(J^*\)-derivations, Journal of Geometry and Physics, Volume 60 (2010), pp. 454-459

[9] Gordji, M. Eshaghi; Gharetapeh, S. Kaboli; T. Karimi; Rashidi, E.; Aghaei, M. Ternary Jordan derivations on \(C^*\)-ternary algebras, Journal of Computational Analysis and Applications, Volume 12 (2010), pp. 463-470

[10] Gordji, M. Eshaghi; Kaboli-Gharetapeh, S.; Park, C.; Zolfaghri, S. Stability of an additive-cubic-quartic functional equation, Advances in Difference Equations, Article ID 395693, Volume 2009 (2009), pp. 1-20

[11] Gordji, M. Eshaghi; Gharetapeh, S. Kaboli; Rassias, J. M.; S. Zolfaghari Solution and stability of a mixed type additive, quadratic and cubic functional equation, Advances in difference equations, Article ID 826130, Volume 2009 (2009), pp. 1-17

[12] Gordji, M. Eshaghi; Karimi, T.; Gharetapeh, S. Kaboli Approximately n-Jordan homomorphisms on Banach algebras, J. Ineq. Appl. Article ID 870843, Volume 2009 (2009), pp. 1-8

[13] Gordji, M. Eshaghi; Khodaei, H. Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis.- TMA, Volume 71 (2009), pp. 5629-5643

[14] Gordji, M. Eshaghi; Khodaei, H. On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abstract and Applied Analysis, Article ID 923476, Volume 2009 (2009), pp. 1-11

[15] Gordji, M. Eshaghi; Najati, A. Approximately \(J^*\)-homomorphisms: A fixed point approach, Journal of Geometry and Physics, Volume 60 (2010), pp. 809-814

[16] Gajda, Z. On stability of additive mappings, Internat. J. Math. Math. Sci., Volume 14 (1991), pp. 431-434

[17] P. Gavruta A generalization of the Hyers Ulam Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[18] Hyers, D. H. On the stability of the linear functional equation, Proc. Natl. Acad. Sci., Volume 27 (1941), pp. 222-224

[19] Hyers, D. H.; Isac, G.; Rassias, T. M. Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998

[20] Khodaei, H.; Rassias, Th. M. Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 22-41

[21] Jun, K. W.; Kim, H. M. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., Volume 274 (2002), pp. 867-878

[22] Jun, K. W.; Kim, H. M.; Chang, I. S. On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl., Volume 7 (2005), pp. 21-33

[23] Jung, S.-M. Hyers-Ulam-Rassias stability of Jensen;s equation and its application, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3137-3143

[24] Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001

[25] Jung, S.-M. Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg, Volume 70 (2000), pp. 175-190

[26] Najati, A.; Park, C. Homomorphisms and derivations \(C^*\)-ternary algebras (preprint)

[27] Park, C. Lie *-homomorphisms between Lie \(C^*\)-algebras and Lie *-derivations on Lie \(C^*\)-algebras, J. Math. Anal. Appl., Volume 293 (2004), pp. 419-434

[28] Park, C. Homomorphisms between Lie \(JC^*\)-algebras and Cauchy-Rassias stability of Lie \(JC^*\)- algebra derivations, J. Lie Theory, Volume 15 (2005), pp. 393-414

[29] Park, C. Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc., Volume 36 (2005), pp. 79-97

[30] Park, C. Isomorphisms between \(C^*\)-ternary algebras, J. Math. Phys., Article ID 103512, 2006

[31] Park, C. Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between \(C^*\)-algebras, Bull. Belgian Math. Soc.-Simon Stevin, Volume 13 (2006), pp. 619-631

[32] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., Volume 46 (1982), pp. 126-130

[33] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, Bull. Sc. Math., Volume 108 (1984), pp. 445-446

[34] Rassias, J. M. On a new approximation of approximately linear mappings by linear mappings, Discuss. Math., Volume 7 (1985), pp. 193-196

[35] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300

[36] Rassias, Th. M. New characterization of inner product spaces, Bull. Sci. Math., Volume 108 (1984), pp. 95-99

[37] Rassias, Th. M.; ·Semrl, P. On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., Volume 114 (1992), pp. 989-993

[38] Rassias, Th. M. The problem of S.M. Ulam for approximately multiplicative mappings, J. Mayh. Anal. Appl., Volume 246 (2000), pp. 352-378

[39] Rassias, Th. M. On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., Volume 251 (2000), pp. 264-284

[40] Rassias, Th. M. On the stability of functional equations and a problem of Ulam, Acta Appl. Math., Volume 62 (2000), pp. 23-130

[41] Th. M. Rassias Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordecht, Boston and London, 2003

[42] Skof, F. Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129

[43] Takhtajan, L. On foundation of the generalized Nambu mechanics, Comm. Math. Phys., Volume 160 (1994), pp. 295-315

[44] Ulam, S. M. Problems in Modern Mathematics, Chapter VI, Science Editions. Wiley, New York, 1964

[45] Vainerman, L.; Kerner, R. On special classes of n-algebras, J. Math. Phys. , Volume 37 (1996), pp. 2553-2565

[46] Zettl, H. A characterization of ternary rings of operators , Adv. Math., Volume 48 (1983), pp. 117-143

Cité par Sources :