Voir la notice de l'article provenant de la source International Scientific Research Publications
$rf( \frac{s \Sigma^p_{ j=1} x_j + t \Sigma^d_{ j=1} x_j}{ r} ) = s \Sigma^p_{ j=1} f(x_j) + t \Sigma^d_{ j=1} f(x_j)$ |
KABOLI GHARETAPEH, S. 1 ; ESHAGHI GORDJI, MADJID 2 ; GHAEMI , M. B.  3 ; RASHIDI, E. 2
@article{JNSA_2011_4_1_a0, author = {KABOLI GHARETAPEH, S. and ESHAGHI GORDJI, MADJID and GHAEMI , M. B. and RASHIDI, E.}, title = {TERNARY {JORDAN} {HOMOMORPHISMS} {IN} {\(C^*\)-TERNARY} {ALGEBRAS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {1-10}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2011}, doi = {10.22436/jnsa.004.01.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.01/} }
TY - JOUR AU - KABOLI GHARETAPEH, S. AU - ESHAGHI GORDJI, MADJID AU - GHAEMI , M. B. AU - RASHIDI, E. TI - TERNARY JORDAN HOMOMORPHISMS IN \(C^*\)-TERNARY ALGEBRAS JO - Journal of nonlinear sciences and its applications PY - 2011 SP - 1 EP - 10 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.01/ DO - 10.22436/jnsa.004.01.01 LA - en ID - JNSA_2011_4_1_a0 ER -
%0 Journal Article %A KABOLI GHARETAPEH, S. %A ESHAGHI GORDJI, MADJID %A GHAEMI , M. B. %A RASHIDI, E. %T TERNARY JORDAN HOMOMORPHISMS IN \(C^*\)-TERNARY ALGEBRAS %J Journal of nonlinear sciences and its applications %D 2011 %P 1-10 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.01/ %R 10.22436/jnsa.004.01.01 %G en %F JNSA_2011_4_1_a0
KABOLI GHARETAPEH, S.; ESHAGHI GORDJI, MADJID; GHAEMI , M. B. ; RASHIDI, E. TERNARY JORDAN HOMOMORPHISMS IN \(C^*\)-TERNARY ALGEBRAS. Journal of nonlinear sciences and its applications, Tome 4 (2011) no. 1, p. 1-10. doi : 10.22436/jnsa.004.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.004.01.01/
[1] Hypersymmetry: a \(Z_3\) graded generalization of supersymmetry, J. Math. Phys., Volume 38 (1997), pp. 1650-1669
[2] Functional Equations in Several Variables, Cambridge Univ. Press, , 1989
[3] On the stability of the linear transformationin Banach spaces, J. Math. Soc. Japan , Volume 2 (1950), pp. 64-66
[4] Remarks on the stability of functional equations, Aequationes Math. , Volume 27 (1984), pp. 76-86
[5] On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, Volume 62 (1992), pp. 59-64
[6] Functional Equations and Inequalities in Several Variables, World Scientific, London , 2002
[7] On approximate additive-quartic and quadratic-cubic functional equations in two variables on abelian groups, Results. Math, DOI 10.1007/s00025-010-0018-4 , 2010
[8] On the stability of \(J^*\)-derivations, Journal of Geometry and Physics, Volume 60 (2010), pp. 454-459
[9] Ternary Jordan derivations on \(C^*\)-ternary algebras, Journal of Computational Analysis and Applications, Volume 12 (2010), pp. 463-470
[10] Stability of an additive-cubic-quartic functional equation, Advances in Difference Equations, Article ID 395693, Volume 2009 (2009), pp. 1-20
[11] Solution and stability of a mixed type additive, quadratic and cubic functional equation, Advances in difference equations, Article ID 826130, Volume 2009 (2009), pp. 1-17
[12] Approximately n-Jordan homomorphisms on Banach algebras, J. Ineq. Appl. Article ID 870843, Volume 2009 (2009), pp. 1-8
[13] Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis.- TMA, Volume 71 (2009), pp. 5629-5643
[14] On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abstract and Applied Analysis, Article ID 923476, Volume 2009 (2009), pp. 1-11
[15] Approximately \(J^*\)-homomorphisms: A fixed point approach, Journal of Geometry and Physics, Volume 60 (2010), pp. 809-814
[16] On stability of additive mappings, Internat. J. Math. Math. Sci., Volume 14 (1991), pp. 431-434
[17] A generalization of the Hyers Ulam Rassias stability of approximately additive mappings, J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436
[18] On the stability of the linear functional equation, Proc. Natl. Acad. Sci., Volume 27 (1941), pp. 222-224
[19] Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998
[20] Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., Volume 1 (2010), pp. 22-41
[21] The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., Volume 274 (2002), pp. 867-878
[22] On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl., Volume 7 (2005), pp. 21-33
[23] Hyers-Ulam-Rassias stability of Jensen;s equation and its application, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3137-3143
[24] Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001
[25] Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg, Volume 70 (2000), pp. 175-190
[26] Homomorphisms and derivations \(C^*\)-ternary algebras (preprint)
[27] Lie *-homomorphisms between Lie \(C^*\)-algebras and Lie *-derivations on Lie \(C^*\)-algebras, J. Math. Anal. Appl., Volume 293 (2004), pp. 419-434
[28] Homomorphisms between Lie \(JC^*\)-algebras and Cauchy-Rassias stability of Lie \(JC^*\)- algebra derivations, J. Lie Theory, Volume 15 (2005), pp. 393-414
[29] Homomorphisms between Poisson \(JC^*\)-algebras, Bull. Braz. Math. Soc., Volume 36 (2005), pp. 79-97
[30] Isomorphisms between \(C^*\)-ternary algebras, J. Math. Phys., Article ID 103512, 2006
[31] Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between \(C^*\)-algebras, Bull. Belgian Math. Soc.-Simon Stevin, Volume 13 (2006), pp. 619-631
[32] On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., Volume 46 (1982), pp. 126-130
[33] On approximation of approximately linear mappings by linear mappings, Bull. Sc. Math., Volume 108 (1984), pp. 445-446
[34] On a new approximation of approximately linear mappings by linear mappings, Discuss. Math., Volume 7 (1985), pp. 193-196
[35] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300
[36] New characterization of inner product spaces, Bull. Sci. Math., Volume 108 (1984), pp. 95-99
[37] On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., Volume 114 (1992), pp. 989-993
[38] The problem of S.M. Ulam for approximately multiplicative mappings, J. Mayh. Anal. Appl., Volume 246 (2000), pp. 352-378
[39] On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., Volume 251 (2000), pp. 264-284
[40] On the stability of functional equations and a problem of Ulam, Acta Appl. Math., Volume 62 (2000), pp. 23-130
[41] Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordecht, Boston and London, 2003
[42] Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, Volume 53 (1983), pp. 113-129
[43] On foundation of the generalized Nambu mechanics, Comm. Math. Phys., Volume 160 (1994), pp. 295-315
[44] Problems in Modern Mathematics, Chapter VI, Science Editions. Wiley, New York, 1964
[45] On special classes of n-algebras, J. Math. Phys. , Volume 37 (1996), pp. 2553-2565
[46] A characterization of ternary rings of operators , Adv. Math., Volume 48 (1983), pp. 117-143
Cité par Sources :