Voir la notice de l'article provenant de la source International Scientific Research Publications
CHOLAMJIAK , PRASIT  1 ; SUANTAI, SUTHEP 1
@article{JNSA_2010_3_4_a9, author = {CHOLAMJIAK , PRASIT and SUANTAI, SUTHEP}, title = {A {MODIFIED} {HALPERN-TYPE} {ITERATION} {PROCESS} {FOR} {AN} {EQUILIBRIUM} {PROBLEM} {AND} {A} {FAMILY} {OF} {RELATIVELY} {QUASI-NONEXPANSIVE} {MAPPINGS} {IN} {BANACH} {SPACES}}, journal = {Journal of nonlinear sciences and its applications}, pages = {309-320}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2010}, doi = {10.22436/jnsa.003.04.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.10/} }
TY - JOUR AU - CHOLAMJIAK , PRASIT AU - SUANTAI, SUTHEP TI - A MODIFIED HALPERN-TYPE ITERATION PROCESS FOR AN EQUILIBRIUM PROBLEM AND A FAMILY OF RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 309 EP - 320 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.10/ DO - 10.22436/jnsa.003.04.10 LA - en ID - JNSA_2010_3_4_a9 ER -
%0 Journal Article %A CHOLAMJIAK , PRASIT %A SUANTAI, SUTHEP %T A MODIFIED HALPERN-TYPE ITERATION PROCESS FOR AN EQUILIBRIUM PROBLEM AND A FAMILY OF RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES %J Journal of nonlinear sciences and its applications %D 2010 %P 309-320 %V 3 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.10/ %R 10.22436/jnsa.003.04.10 %G en %F JNSA_2010_3_4_a9
CHOLAMJIAK , PRASIT ; SUANTAI, SUTHEP. A MODIFIED HALPERN-TYPE ITERATION PROCESS FOR AN EQUILIBRIUM PROBLEM AND A FAMILY OF RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 309-320. doi : 10.22436/jnsa.003.04.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.10/
[1] Matric and generalized projection operators in Banach spaces: Properties and applications, in: A.G.Kartsatos(Ed.), Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, Marcel Dekker, New York, 1996
[2] An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. , Volume 4 (1994), pp. 39-54
[3] Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal. , Volume 7 (2001), pp. 151-174
[4] Weak convergence of orbits of nonlinear operators in reflexive Banach spaces, Numer. Funct. Anal. Optim. , Volume 24 (2003), pp. 489-508
[5] From optimization and variational inequalities to equilibrium problems, Math. Student , Volume 63 (1994), pp. 123-145
[6] Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization , Volume 37 (1996), pp. 323-339
[7] A hybrid iterative scheme for equilibrium problems, variational inequality problems and fixed point problems in Banach spaces, Fixed Point Theory Appl. , doi:10.1155/2009/719360., 2009
[8] Geometry of Banach spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Plublishers, Dordrecht, 1990
[9] Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. , Volume 6 (2005), pp. 117-136
[10] Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. , Volume 73 (1967), pp. 957-961
[11] Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. , Volume 13 (2002), pp. 938-945
[12] Existence and approximation of fixed points of firmly nonexpansive type mappings in Banach spaces, SIAM J. Optim. , Volume 19 (2008), pp. 824-835
[13] Strong convergence of the CQ method for fixed point iteration processes, J. Nonlinear Anal. , Volume 64 (2006), pp. 2400-2411
[14] A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory , Volume 134 (2005), pp. 257-266
[15] Weak and strong convergence theorems for relatively non- expansive mappings in Banach spaces, Fixed point Theory Appl. (2004), pp. 37-47
[16] Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379
[17] Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space, J. Approx. Theory. , Volume 149 (2007), pp. 103-115
[18] Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. , Volume 225 (2009), pp. 20-30
[19] Convergence of a modified Halpern-type iteration algorithm for quasi- \(\phi\)-nonexpansive mappings, Appl. Math. Lett. , Volume 22 (2009), pp. 1051-1055
[20] Strong convergence theorems for relatively nonexpansive mappings in a Banach space, J. Nonlinear Anal. , Volume 67 (2007), pp. 1958-1965
[21] A weak convergence theorem for the alternating method with Bregman distance, in: A.G.Kartsatos(Ed.), Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, Marcel Dekker, New York (1996), pp. 313-318
[22] Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings, Fixed Point Theory Appl. , doi:10.1155/2008/284613. , 2008
[23] Weak and strong convergence theorems for nonexpansive mappings and an equilibrium problem, J. Optim. Theory Appl. , Volume 133 (2007), pp. 359-370
[24] Nonlinear Functional Analysis, Yokohama Plublishers, , 2000
[25] Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mappings in a Hilbert space, J. Nonlinear Anal. , Volume 69 (2008), pp. 1025-1033
[26] Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, J. Nonlinear Anal. , Volume 70 (2009), pp. 45-57
[27] Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed point Theory Appl., doi:10.1155/2008/528476. , 2008
[28] Strong convergence theorems by a new projection algorithm for fixed point problems and equilibrium problems of two relatively quasi-nonexpansive mappings, Nonlinear Analysis: Hybrid Systems, Volume 3 (2009), pp. 11-20
[29] Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. , Volume 65 (2002), pp. 109-113
[30] On iterative methods for equilibrium problems, J. Nonlinear Anal. , Volume 70 (2009), pp. 497-509
[31] On uniformly convex functions, J. Math. Anal. Appl. , Volume 95 (1983), pp. 344-374
Cité par Sources :