A MODIFIED HALPERN-TYPE ITERATION PROCESS FOR AN EQUILIBRIUM PROBLEM AND A FAMILY OF RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 309-320.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, based on a generalized projection, we introduce a new modified Halpern-type iteration algorithm for finding a common element of the set of solutions of an equilibrium problem and the set of a common fixed point of an infinitely countable family of relatively quasi-nonexpansive mappings in the framework of Banach spaces. We establish the strong convergence theorem and obtain some applications. Our main results improve and extend the corresponding results announced by many authors.
DOI : 10.22436/jnsa.003.04.10
Classification : 47H09, 47H10
Keywords: Equilibrium problem, strong convergence, common fixed point, relatively quasi-nonexpansive mapping, Halpern-type iteration process.

CHOLAMJIAK , PRASIT  1 ; SUANTAI, SUTHEP 1

1 Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
@article{JNSA_2010_3_4_a9,
     author = {CHOLAMJIAK , PRASIT  and SUANTAI, SUTHEP},
     title = {A {MODIFIED} {HALPERN-TYPE} {ITERATION} {PROCESS} {FOR} {AN} {EQUILIBRIUM} {PROBLEM} {AND} {A} {FAMILY} {OF} {RELATIVELY} {QUASI-NONEXPANSIVE} {MAPPINGS} {IN} {BANACH} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {309-320},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     doi = {10.22436/jnsa.003.04.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.10/}
}
TY  - JOUR
AU  - CHOLAMJIAK , PRASIT 
AU  - SUANTAI, SUTHEP
TI  - A MODIFIED HALPERN-TYPE ITERATION PROCESS FOR AN EQUILIBRIUM PROBLEM AND A FAMILY OF RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 309
EP  - 320
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.10/
DO  - 10.22436/jnsa.003.04.10
LA  - en
ID  - JNSA_2010_3_4_a9
ER  - 
%0 Journal Article
%A CHOLAMJIAK , PRASIT 
%A SUANTAI, SUTHEP
%T A MODIFIED HALPERN-TYPE ITERATION PROCESS FOR AN EQUILIBRIUM PROBLEM AND A FAMILY OF RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES
%J Journal of nonlinear sciences and its applications
%D 2010
%P 309-320
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.10/
%R 10.22436/jnsa.003.04.10
%G en
%F JNSA_2010_3_4_a9
CHOLAMJIAK , PRASIT ; SUANTAI, SUTHEP. A MODIFIED HALPERN-TYPE ITERATION PROCESS FOR AN EQUILIBRIUM PROBLEM AND A FAMILY OF RELATIVELY QUASI-NONEXPANSIVE MAPPINGS IN BANACH SPACES. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 309-320. doi : 10.22436/jnsa.003.04.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.10/

[1] Alber, Ya. I Matric and generalized projection operators in Banach spaces: Properties and applications, in: A.G.Kartsatos(Ed.), Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, Marcel Dekker, New York, 1996

[2] Alber, Ya. I; Reich, S. An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. , Volume 4 (1994), pp. 39-54

[3] Butnariu, D.; Reich, S.; Zaslavski, A. J. Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal. , Volume 7 (2001), pp. 151-174

[4] Butnariu, D.; Reich, S.; Zaslavski, A. J. Weak convergence of orbits of nonlinear operators in reflexive Banach spaces, Numer. Funct. Anal. Optim. , Volume 24 (2003), pp. 489-508

[5] Blum, E.; W. Oettli From optimization and variational inequalities to equilibrium problems, Math. Student , Volume 63 (1994), pp. 123-145

[6] Censor, Y.; Reich, S. Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization , Volume 37 (1996), pp. 323-339

[7] Cholamjiak, P. A hybrid iterative scheme for equilibrium problems, variational inequality problems and fixed point problems in Banach spaces, Fixed Point Theory Appl. , doi:10.1155/2009/719360., 2009

[8] Cioranescu, I. Geometry of Banach spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Plublishers, Dordrecht, 1990

[9] Combettes, P. L.; Hirstoaga, S. A. Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. , Volume 6 (2005), pp. 117-136

[10] B. Halpern Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. , Volume 73 (1967), pp. 957-961

[11] Kamimura, S.; Takahashi, W. Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. , Volume 13 (2002), pp. 938-945

[12] Kohsaka, F.; Takahashi, W. Existence and approximation of fixed points of firmly nonexpansive type mappings in Banach spaces, SIAM J. Optim. , Volume 19 (2008), pp. 824-835

[13] Martinez-Yanes, C.; H. K. Xu Strong convergence of the CQ method for fixed point iteration processes, J. Nonlinear Anal. , Volume 64 (2006), pp. 2400-2411

[14] Matsushita, S.; Takahashi, W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory , Volume 134 (2005), pp. 257-266

[15] Matsushita, S.; Takahashi, W. Weak and strong convergence theorems for relatively non- expansive mappings in Banach spaces, Fixed point Theory Appl. (2004), pp. 37-47

[16] Nakajo, K.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379

[17] Plubtieng, S.; Ungchittrakool, K. Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space, J. Approx. Theory. , Volume 149 (2007), pp. 103-115

[18] Qin, X.; Cho, Y. J.; Kang, S. M. Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math. , Volume 225 (2009), pp. 20-30

[19] Qin, X.; Cho, Y. J.; Kang, S. M.; Zhou, H. Convergence of a modified Halpern-type iteration algorithm for quasi- \(\phi\)-nonexpansive mappings, Appl. Math. Lett. , Volume 22 (2009), pp. 1051-1055

[20] Qin, X.; Su, Y. Strong convergence theorems for relatively nonexpansive mappings in a Banach space, J. Nonlinear Anal. , Volume 67 (2007), pp. 1958-1965

[21] Reich, S. A weak convergence theorem for the alternating method with Bregman distance, in: A.G.Kartsatos(Ed.), Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, Marcel Dekker, New York (1996), pp. 313-318

[22] Su, Y.; Wang, D.; M. Shang Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings, Fixed Point Theory Appl. , doi:10.1155/2008/284613. , 2008

[23] Tada, A.; Takahashi, W. Weak and strong convergence theorems for nonexpansive mappings and an equilibrium problem, J. Optim. Theory Appl. , Volume 133 (2007), pp. 359-370

[24] W. Takahashi Nonlinear Functional Analysis, Yokohama Plublishers, , 2000

[25] Takahashi, S.; W. Takahashi Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mappings in a Hilbert space, J. Nonlinear Anal. , Volume 69 (2008), pp. 1025-1033

[26] Takahashi, W.; Zembayashi, K. Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, J. Nonlinear Anal. , Volume 70 (2009), pp. 45-57

[27] Takahashi, W.; Zembayashi, K. Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed point Theory Appl., doi:10.1155/2008/528476. , 2008

[28] Wattanawitoon, K.; Kumam, P. Strong convergence theorems by a new projection algorithm for fixed point problems and equilibrium problems of two relatively quasi-nonexpansive mappings, Nonlinear Analysis: Hybrid Systems, Volume 3 (2009), pp. 11-20

[29] Xu, H. K. Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. , Volume 65 (2002), pp. 109-113

[30] Yao, Y.; Noor, M. A.; Liou, Y. C. On iterative methods for equilibrium problems, J. Nonlinear Anal. , Volume 70 (2009), pp. 497-509

[31] Zălinescu, C. On uniformly convex functions, J. Math. Anal. Appl. , Volume 95 (1983), pp. 344-374

Cité par Sources :