ĆIRIĆ'S FIXED POINT THEOREM IN A CONE METRIC SPACE
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 302-308.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we extend a fixed point theorem due to Ćirić to a cone metric space.
DOI : 10.22436/jnsa.003.04.09
Classification : 54H25, 47H10
Keywords: Ćirić's theorem, Cone metric space, Fixed point.

SAMET, BESSEM 1

1 Département de Mathématiques, École Supérieure des Sciences et Techniques de Tunis, 5, Avenue Taha Hussein-Tunis, B. P. 56, Bab Menara-1008, Tunisie
@article{JNSA_2010_3_4_a8,
     author = {SAMET, BESSEM},
     title = {\'CIRI\'C'S {FIXED} {POINT} {THEOREM} {IN} {A} {CONE} {METRIC} {SPACE}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {302-308},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     doi = {10.22436/jnsa.003.04.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.09/}
}
TY  - JOUR
AU  - SAMET, BESSEM
TI  - ĆIRIĆ'S FIXED POINT THEOREM IN A CONE METRIC SPACE
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 302
EP  - 308
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.09/
DO  - 10.22436/jnsa.003.04.09
LA  - en
ID  - JNSA_2010_3_4_a8
ER  - 
%0 Journal Article
%A SAMET, BESSEM
%T ĆIRIĆ'S FIXED POINT THEOREM IN A CONE METRIC SPACE
%J Journal of nonlinear sciences and its applications
%D 2010
%P 302-308
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.09/
%R 10.22436/jnsa.003.04.09
%G en
%F JNSA_2010_3_4_a8
SAMET, BESSEM. ĆIRIĆ'S FIXED POINT THEOREM IN A CONE METRIC SPACE. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 302-308. doi : 10.22436/jnsa.003.04.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.09/

[1] Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. , Volume 341 (2008), pp. 416-420

[2] Azam, A.; Arshad, M.; Beg, I. Common fixed points of two maps in cone metric spaces , Rend. Circ. Mat. Palermo. , Volume 57 (2008), pp. 433-441

[3] Azam, A.; Arshad, M.; Beg, I. Common fixed point theorems in cone metric spaces, J. Nonlinear Sci. Appl. , Volume 2 (4) (2009), pp. 204-213

[4] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. , Volume 3 (1922), pp. 133-181

[5] Beg, I.; Abbas, M.; Nazir, T. Generalized cone metric spaces, J. Nonlinear Sci. Appl. , Volume 3 (1) (2010), pp. 21-31

[6] Bhaskar, T. G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. , Volume 65 (2006), pp. 1379-1393

[7] Boyd, D. W.; Wong, J. S. On nonlinear contractions, Proc. Amer. Math. Soc. , Volume 20 (1969), pp. 458-464

[8] Ćirić, L. B. Generalized contractions and fixed point theorems, Publ. L'Inst. Math. , Volume 12 (26) (1971), pp. 19-26

[9] Ćirić, L. B. Fixed points for generalized multi-valued mappings, Mat. Vesnik , Volume 9 (24) (1972), pp. 265-272

[10] Ćirić, L. B. A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. , Volume 45 (1974), pp. 267-273

[11] Ćirić, L. B. Non-self mappings satisfying nonlinear contractive condition with applications, Nonlinear Anal. , Volume 71 (2009), pp. 2927-2935

[12] Huang, L-G.; X. Zhang Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. , Volume 332 (2007), pp. 1468-1476

[13] Ilic, D.; Rakocevic, V. Common fixed points for maps on cone metric space, J. Math. Anal. Appl. , Volume 341 (2008), pp. 876-882

[14] Jleli, M.; Samet, B. The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl. , Volume 2 (3) (2009), pp. 161-167

[15] Lakshmikantham, V.; L. B. Ćirić Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. , Volume 70 (2009), pp. 4341-4349

[16] Rezapour, S.; Hamlbarani, R. Some notes on the paper ''Cone metric spaces and fixed point theorems of contractive mappings'', J. Math. Anal. Appl. , Volume 345 (2008), pp. 719-724

[17] Samet, B. Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal., doi:10.1016/j.na.2010.02.026., 2010

Cité par Sources :