Voir la notice de l'article provenant de la source International Scientific Research Publications
SAMET, BESSEM 1
@article{JNSA_2010_3_4_a8, author = {SAMET, BESSEM}, title = {\'CIRI\'C'S {FIXED} {POINT} {THEOREM} {IN} {A} {CONE} {METRIC} {SPACE}}, journal = {Journal of nonlinear sciences and its applications}, pages = {302-308}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2010}, doi = {10.22436/jnsa.003.04.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.09/} }
TY - JOUR AU - SAMET, BESSEM TI - ĆIRIĆ'S FIXED POINT THEOREM IN A CONE METRIC SPACE JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 302 EP - 308 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.09/ DO - 10.22436/jnsa.003.04.09 LA - en ID - JNSA_2010_3_4_a8 ER -
%0 Journal Article %A SAMET, BESSEM %T ĆIRIĆ'S FIXED POINT THEOREM IN A CONE METRIC SPACE %J Journal of nonlinear sciences and its applications %D 2010 %P 302-308 %V 3 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.09/ %R 10.22436/jnsa.003.04.09 %G en %F JNSA_2010_3_4_a8
SAMET, BESSEM. ĆIRIĆ'S FIXED POINT THEOREM IN A CONE METRIC SPACE. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 302-308. doi : 10.22436/jnsa.003.04.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.09/
[1] Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. , Volume 341 (2008), pp. 416-420
[2] Common fixed points of two maps in cone metric spaces , Rend. Circ. Mat. Palermo. , Volume 57 (2008), pp. 433-441
[3] Common fixed point theorems in cone metric spaces, J. Nonlinear Sci. Appl. , Volume 2 (4) (2009), pp. 204-213
[4] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math. , Volume 3 (1922), pp. 133-181
[5] Generalized cone metric spaces, J. Nonlinear Sci. Appl. , Volume 3 (1) (2010), pp. 21-31
[6] Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. , Volume 65 (2006), pp. 1379-1393
[7] On nonlinear contractions, Proc. Amer. Math. Soc. , Volume 20 (1969), pp. 458-464
[8] Generalized contractions and fixed point theorems, Publ. L'Inst. Math. , Volume 12 (26) (1971), pp. 19-26
[9] Fixed points for generalized multi-valued mappings, Mat. Vesnik , Volume 9 (24) (1972), pp. 265-272
[10] A generalization of Banach's contraction principle, Proc. Amer. Math. Soc. , Volume 45 (1974), pp. 267-273
[11] Non-self mappings satisfying nonlinear contractive condition with applications, Nonlinear Anal. , Volume 71 (2009), pp. 2927-2935
[12] Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. , Volume 332 (2007), pp. 1468-1476
[13] Common fixed points for maps on cone metric space, J. Math. Anal. Appl. , Volume 341 (2008), pp. 876-882
[14] The Kannan's fixed point theorem in a cone rectangular metric space, J. Nonlinear Sci. Appl. , Volume 2 (3) (2009), pp. 161-167
[15] Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. , Volume 70 (2009), pp. 4341-4349
[16] Some notes on the paper ''Cone metric spaces and fixed point theorems of contractive mappings'', J. Math. Anal. Appl. , Volume 345 (2008), pp. 719-724
[17] Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal., doi:10.1016/j.na.2010.02.026., 2010
Cité par Sources :