B.Y. CHEN INEQUALITIES FOR BI-SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 282-293.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of the present paper is to study Chen inequalities for slant, bi-slant and semi-slant submanifolds in generalized complex space forms.
DOI : 10.22436/jnsa.003.04.07
Classification : 53C40, 53C15
Keywords: Chen inequalities, slant submanifold, semi-slant submanifold, generalized complex space form.

SHUKLA , S. S.  1 ; RAO, PAWAN KUMAR 1

1 Department of Mathematics, University of Allahabad, U.P., 211002, Allahabad, India
@article{JNSA_2010_3_4_a6,
     author = {SHUKLA , S. S.  and RAO, PAWAN KUMAR},
     title = {B.Y. {CHEN} {INEQUALITIES} {FOR} {BI-SLANT} {SUBMANIFOLDS} {IN} {GENERALIZED} {COMPLEX} {SPACE} {FORMS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {282-293},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     doi = {10.22436/jnsa.003.04.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.07/}
}
TY  - JOUR
AU  - SHUKLA , S. S. 
AU  - RAO, PAWAN KUMAR
TI  - B.Y. CHEN INEQUALITIES FOR BI-SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 282
EP  - 293
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.07/
DO  - 10.22436/jnsa.003.04.07
LA  - en
ID  - JNSA_2010_3_4_a6
ER  - 
%0 Journal Article
%A SHUKLA , S. S. 
%A RAO, PAWAN KUMAR
%T B.Y. CHEN INEQUALITIES FOR BI-SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS
%J Journal of nonlinear sciences and its applications
%D 2010
%P 282-293
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.07/
%R 10.22436/jnsa.003.04.07
%G en
%F JNSA_2010_3_4_a6
SHUKLA , S. S. ; RAO, PAWAN KUMAR. B.Y. CHEN INEQUALITIES FOR BI-SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 282-293. doi : 10.22436/jnsa.003.04.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.07/

[1] Aktan, N.; Sarikaya, M. Z.; Ozusaglam, E.; B. Y. Chen's inequality for semislant submanifolds in T-space forms, Balkan J. Geom. Appl., Volume 13(1) (2008), pp. 1-10

[2] Cabrerizo, J. L.; Carriazo, A.; Fernandez, L. M.; Fernandez, M. Slant submanifolds in sasakian manifolds, Glasgow Math. J., Volume 42(1) (2000), pp. 125-138

[3] Cabrerizo, J. L.; Carriazo, A.; Fernandez, L. M.; Fernandez, M. Semi-slant submanifolds of a Sasakian manifold, Geometriae Dedicata, Volume 78(2) (1999), pp. 183-199

[4] Chen, B. Y. Geometry of slant submanifols, K. U. Leuven, , 1990

[5] Chen, B. Y. Some pinching and classification theorems for minimal submanifolds, Arch. Math., Volume 60 (1993), pp. 568-578

[6] Chen, B. Y. Some new obstructions to minimal and Lagrangian isometric immersions, Japan J. Math. (N.S.), Volume 26 (2000), pp. 105-127

[7] Chen, B. Y. Mean curvature and shape operator of isometric immersions in real space forms, Glasgow Math. J., Volume 38 (1996), pp. 87-97

[8] Chen, B. Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary co-dimensions, Glasgow Math. J., Volume 41 (1999), pp. 33-41

[9] Chen, B. Y. Slant immersions, Bull. Aus. Math. Soc., Volume 41 (1990), pp. 135-147

[10] Chen, B. Y.; Tazawa, Y. Slant submanifolds in complex Euclidean spaces, Tokyo J. Math., Volume 14 (1991), pp. 101-120

[11] Chen, B. Y.; Vrancken, L. Existence and Uniqueness theorem for slant immersions and its applications, Results Math., Volume 31 (1997), pp. 28-39

[12] Chen, B. Y. A general inequality for Kaehlerian slant submanifolds and related results, Geometriae Dedicata, Volume 85 (2001), pp. 253-271

[13] Cioroboiu, D.; B. Y. Chen Inequalities for semi-slant submanifolds in Sasakian space forms, IJMMS, Volume 27 (2003), pp. 1731-1738

[14] Gray, A. Nearly Kaehlerian manifolds, J. Diff. Geometry, Volume 4 (1970), pp. 283-309

[15] Gupta, R. S.; Ahmed, I.; Haider, S. M. K.; B. Y. Chen's inequality and its applications to slant immersions into Kenmotsu manifolds, Kyungpook Math. J., Volume 44 (2004), pp. 101-110

[16] Kim, J. S.; Song, Y. M.; Tripathi, M. M.; B. Y. Chen Inequalities for submanifolds in generalized complex space forms, Bull. Korean Math. Soc., Volume 40(3) (2003), pp. 411-423

[17] Kim, J. S.; Song, Y. M.; Tripathi, M. M. Shape operator for slant submanifolds in generalized complex space forms, Indian J. Pure appl. Math., Volume 34(8) (2003), pp. 1153-1163

[18] Matsumoto, K.; Mihai, I.; Oiaga, A. Shape operator \(A_H\) for slant submanifolds in complex space forms, Bull. Yamagata Univ., Volume 14 (2000), pp. 169-177

[19] Mihai, A. t Shape operator AH for slant submanifolds in generalized complex space forms, Turk. J. Math., Volume 27 (2003), pp. 509-523

[20] Mihai, A.; B. Y. Chen Inequalities for slant submanifolds in generalized complex space forms, Radovi Mathematicki, Volume 12 (2004), pp. 215-231

[21] Mihai, I.; Rosca, R.; Veratraelen, L. Some aspects of the Differential Geometry of vector fields, PADGF2, K.U. Leuven, Brussels, 1996

[22] Oiaga, A. Inequalities for certain submanifolds in complex space forms, Porc. 10th Int. Symposium Classical Analysis, Kazimierz Dolny (Poland) (1999), pp. 49-61

[23] Oiaga, A.; Mihai, I.; B. Y. Chen Inequalities for slant submanifolds in complex space forms, Demonstratio Math., Volume 32(4) (1999), pp. 835-846

[24] Papaghiuc, N. Semi-slant submanifolds of Kaehlerian manifold, Ann. St. Univ. Iasi, tom. XL, S.I., Volume 9(f1) (1994), pp. 55-61

[25] Urbano, F. CR-submanifolds of nearly Kaehler manifolds, Doctoral Thesis, Granada , 1980

[26] Yano, K.; Kon, M. Structures on manifolds, World Scientific, Singapore , 1984

Cité par Sources :