GENERALIZED HYERS ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN BANACH SPACES
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 272-281.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equation
$f(x + 2y) + f(x - 2y) = 4f(x + y) + 4f(x - y) - 6f(x) + f(2y) + f(-2y) - 4f(y) - 4f(-y)$
in non-Archimedean Banach spaces.
DOI : 10.22436/jnsa.003.04.06
Classification : 46S10, 39B52, 54E40, 47S10, 26E30, 12J25
Keywords: non-Archimedean Banach space, additive-quadratic-cubic-quartic functional equation, generalized Hyers-Ulam stability.

PARK, CHOONKIL 1 ; GORDJI , MADJID ESHAGHI  2 ; NAJATI, ABBAS 3

1 Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
2 Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
3 Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
@article{JNSA_2010_3_4_a5,
     author = {PARK, CHOONKIL and GORDJI , MADJID ESHAGHI  and NAJATI, ABBAS},
     title = {GENERALIZED {HYERS} {ULAM} {STABILITY} {OF} {AN} {AQCQ-FUNCTIONAL} {EQUATION} {IN} {NON-ARCHIMEDEAN} {BANACH} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {272-281},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     doi = {10.22436/jnsa.003.04.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.06/}
}
TY  - JOUR
AU  - PARK, CHOONKIL
AU  - GORDJI , MADJID ESHAGHI 
AU  - NAJATI, ABBAS
TI  - GENERALIZED HYERS ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN BANACH SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 272
EP  - 281
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.06/
DO  - 10.22436/jnsa.003.04.06
LA  - en
ID  - JNSA_2010_3_4_a5
ER  - 
%0 Journal Article
%A PARK, CHOONKIL
%A GORDJI , MADJID ESHAGHI 
%A NAJATI, ABBAS
%T GENERALIZED HYERS ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN BANACH SPACES
%J Journal of nonlinear sciences and its applications
%D 2010
%P 272-281
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.06/
%R 10.22436/jnsa.003.04.06
%G en
%F JNSA_2010_3_4_a5
PARK, CHOONKIL; GORDJI , MADJID ESHAGHI ; NAJATI, ABBAS. GENERALIZED HYERS ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN BANACH SPACES. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 272-281. doi : 10.22436/jnsa.003.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.06/

[1] Aoki, T. On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[2] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math., Volume 27 (1984), pp. 76-86

[3] Czerwik, S. On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg , Volume 62 (1992), pp. 59-64

[4] Czerwik, P. Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002

[5] Eshaghi-Gordji, M.; Abbaszadeh, S.; Park, C. On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, Journal of Inequalities and Applications, Art. ID 153084 , 2009

[6] Gordji, M. Eshaghi; Savadkouhi, M. Bavand Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta Appl. Math., DOI 10.1007/s10440-009-9512-7, 2009

[7] Eshaghi-Gordji, M.; Kaboli-Gharetapeh, S.; Park, C.; Zolfaghri, S. Stability of an additive-cubic- quartic functional equation, Advances in Difference Equations , Art. ID 395693 , 2009

[8] Gordji, M. Eshaghi; Khodaei, H. Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis.-TMA , Volume 71 (2009), pp. 5629-5643

[9] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436

[10] Hyers, D. H. On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224

[11] Hyers, D. H.; Isac, G.; Rassias, Th. M. Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998

[12] Jun, K.; Kim, H. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. , Volume 274 (2002), pp. 867-878

[13] Jung, S. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001

[14] Khodaei, H.; Th. M. Rassias Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. , Volume 1 (2010), pp. 22-41

[15] Lee, S.; Im, S.; Hwang, I. Quartic functional equations, J. Math. Anal. Appl. , Volume 307 (2005), pp. 387-394

[16] Moradlou, F.; Vaezi, H.; Eskandani, G. M. Hyers-Ulam-Rassias stability of a quadartic and additive functional equation in quasi-Banach spaces, Mediterr. J. Math. , Volume 6 (2009), pp. 233-248

[17] Moslehian, M. S.; Rassias, Th. M. Stability of functional equations in non-Archimedean spaces, Applicable Analysis and Discrete Mathematics. , Volume 1 (2007), pp. 325-334

[18] Moslehian, M. S.; Sadeghi, Gh. A Mazur-Ulam theorem in non-Archimedean normed spaces, Non- linear Anal.-TMA , Volume 69 (2008), pp. 3405-3408

[19] Park, C. On an approximate automorphism on a \(C^*\)-algebra, Proc. Amer. Math. Soc. , Volume 132 (2003), pp. 1739-1745

[20] Park, C. Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. , Volume 132 (2008), pp. 87-96

[21] Park, C.; Cui, J. Generalized stability of \(C^*\)-ternary quadratic mappings, Abstract Appl. Anal., Art. ID 23282 , 2007

[22] Park, C.; Najati, A. Homomorphisms and derivations in \(C^*\)-algebras, Abstract Appl. Anal. , Art. ID 80630 , 2007

[23] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. , Volume 46 (1982), pp. 126-130

[24] Rassias, J. M. On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. , Volume 108 (1984), pp. 445-446

[25] Rassias, J. M. Refined Hyers-Ulam approximation of approximately Jensen type mappings , Bull. Sci. Math. , Volume 131 (2007), pp. 89-98

[26] Rassias, J. M.; Rassias, M. J. Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. , Volume 129 (2005), pp. 545-558

[27] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. , Volume 72 (1978), pp. 297-300

[28] Rassias, Th. M. Problem 16, Report of the 27th International Symp. on Functional Equations, Aequationes Math. , Volume 39 (1990), pp. 292-293

[29] Rassias, Th. M. On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (1998), pp. 89-124

[30] Rassias, Th. M. The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., Volume 246 (2000), pp. 352-378

[31] Rassias, Th. M. On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. , Volume 251 (2000), pp. 264-284

[32] Rassias, Th. M. On the stability of functional equations and a problem of Ulam, Acta Appl. Math. , Volume 62 (2000), pp. 23-130

[33] Rassias, Th. M.; Šemrl, P. On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. , Volume 114 (1992), pp. 989-993

[34] Rassias, Th. M.; P. Šemrl On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. , Volume 173 (1993), pp. 325-338

[35] Rassias, Th. M.; Shibata, K. Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. , Volume 228 (1998), pp. 234-253

[36] Skof, F. Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano , Volume 53 (1983), pp. 113-129

[37] Ulam, S. M. A Collection of the Mathematical Problems, Interscience Publ. , New York, 1960

Cité par Sources :