J. M. RASSIAS PRODUCT-SUM STABILITY OF AN EULER-LAGRANGE FUNCTIONAL EQUATION
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 265-271.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In 1940 (and 1964) S. M. Ulam proposed the well-known Ulam stability problem. In 1941 D. H. Hyers solved the Hyers-Ulam problem for linear mappings. In 1992 and 2008, J. M. Rassias introduced the Euler-Lagrange quadratic mappings and the JMRassias ''product-sum'' stability, respectively. In this paper we introduce an Euler-Lagrange type quadratic functional equation and investigate the JMRassias ''product-sum'' stability of this equation. The stability results have applications in Mathematical Statistics, Stochastic Analysis and Psychology.
DOI : 10.22436/jnsa.003.04.05
Classification : 39B, 26D
Keywords: J.M.Rassias ''product-sum'' stability, Euler-Lagrange type quadratic functional equation.

RASSIAS, MATINA J. 1

1 Department of Statistics, University of Glasgow, Mathematics Building, Office No. 208, University Gardens, Glasgow G12 8QW, U.K
@article{JNSA_2010_3_4_a4,
     author = {RASSIAS, MATINA J.},
     title = {J. {M.} {RASSIAS} {PRODUCT-SUM} {STABILITY} {OF} {AN} {EULER-LAGRANGE} {FUNCTIONAL} {EQUATION}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {265-271},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     doi = {10.22436/jnsa.003.04.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.05/}
}
TY  - JOUR
AU  - RASSIAS, MATINA J.
TI  - J. M. RASSIAS PRODUCT-SUM STABILITY OF AN EULER-LAGRANGE FUNCTIONAL EQUATION
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 265
EP  - 271
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.05/
DO  - 10.22436/jnsa.003.04.05
LA  - en
ID  - JNSA_2010_3_4_a4
ER  - 
%0 Journal Article
%A RASSIAS, MATINA J.
%T J. M. RASSIAS PRODUCT-SUM STABILITY OF AN EULER-LAGRANGE FUNCTIONAL EQUATION
%J Journal of nonlinear sciences and its applications
%D 2010
%P 265-271
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.05/
%R 10.22436/jnsa.003.04.05
%G en
%F JNSA_2010_3_4_a4
RASSIAS, MATINA J. J. M. RASSIAS PRODUCT-SUM STABILITY OF AN EULER-LAGRANGE FUNCTIONAL EQUATION. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 265-271. doi : 10.22436/jnsa.003.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.05/

[1] Arunkumar, M. Hyers-Ulam-Rassias (HUR), Ulam-Gavruta-Rassias (UGR) and JMRassias (JMR) Stabilities of Various Functional Equations, PhD Thesis, Thiruvalluvar University, Vellore - 632 004, 2009

[2] Gordji, M. E.; Zolfaghari, S.; Rassias, J. M.; Savadkouhi, M. B. Solution and Stability of a Mixed Type Cubic and Quartic functional equation in Quasi-Banach spaces, Abstract and Applied Analysis, Art. ID 417473, Doi: 10.1155/2009/417473. (2009), pp. 1-14

[3] Hyers, D. H. On the stability of the linear functional equations, Proc. Nat. Acad. Sci., 27, 222-224: The Stability of Homomorphisms and Related Topics, 'Global Analysis - Analysis of Manifolds', Teubner-Texte zur Mathematik, Volume 57 (1983), pp. 140-153

[4] Rassias, J. M. Solution of a problem of Ulam, J. Approx. Theory, Volume 57 (1989), pp. 268-273

[5] Rassias, J. M. On the stability of the Euler-Lagrange functional equation, Chinese J. Math., Volume 20 (1992), pp. 185-190

[6] Rassias, M. J.; J. M. Rassias On the Ulam stability for Euler-Lagrange type quadratic functional equations, Austral. J. Math. Anal. Appl., Volume 2 (2005), pp. 1-10

[7] Ravi, K.; Arunkumar, M.; Rassias, J. M. Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Intern. J. Math. Stat., Volume 3 (2008), pp. 36-46

[8] Savadkouhi, M. B.; Gordji, M. E.; Rassias, J. M.; Ghobadipour, N. Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys., Volume 50 (2009), pp. 1-9

[9] S. M. Ulam A Collection of Mathematical problems , Interscience Publisher, Inc., No. 8, New York ; Problems in Modern Mathematics, Wiley and Sons, New York, 1964

Cité par Sources :