Voir la notice de l'article provenant de la source International Scientific Research Publications
LAKSHMI, B. S. 1
@article{JNSA_2010_3_4_a3, author = {LAKSHMI, B. S.}, title = {A {BROWNIAN} {POPULATION} {MODEL}}, journal = {Journal of nonlinear sciences and its applications}, pages = {261-264}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2010}, doi = {10.22436/jnsa.003.04.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.04/} }
TY - JOUR AU - LAKSHMI, B. S. TI - A BROWNIAN POPULATION MODEL JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 261 EP - 264 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.04/ DO - 10.22436/jnsa.003.04.04 LA - en ID - JNSA_2010_3_4_a3 ER -
LAKSHMI, B. S. A BROWNIAN POPULATION MODEL. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 261-264. doi : 10.22436/jnsa.003.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.04/
[1] Differential equations and their applications, Springer-Verlag, 4th ed., 1993
[2] Oscillating Population Models, Chaos, Solitons and Fractals, Volume 16 (2003), pp. 183-186
[3] Mathematical Ecology, John Wiley, New York, 1976
[4] Fundamentals of statistical and thermal physics, McGraw Hill, Singapore, 1988
[5] Ordinary Differential Equations and Applications, Albion Publishing Chichester, , 1998
Cité par Sources :