A BROWNIAN POPULATION MODEL
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 261-264.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We consider a population model in which there is no information about the births and deaths and so can be modelled by a random process.We come to the interesting conclusion that even though births and deaths have equal probability,the population itself steadily increases towards the maximum sustainable level.
DOI : 10.22436/jnsa.003.04.04
Keywords: population models.

LAKSHMI, B. S. 1

1 College of Engineering, Jawaharlal Nehru Technological University, Kukat- pally, Hyderabad, India
@article{JNSA_2010_3_4_a3,
     author = {LAKSHMI, B. S.},
     title = {A {BROWNIAN} {POPULATION} {MODEL}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {261-264},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     doi = {10.22436/jnsa.003.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.04/}
}
TY  - JOUR
AU  - LAKSHMI, B. S.
TI  - A BROWNIAN POPULATION MODEL
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 261
EP  - 264
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.04/
DO  - 10.22436/jnsa.003.04.04
LA  - en
ID  - JNSA_2010_3_4_a3
ER  - 
%0 Journal Article
%A LAKSHMI, B. S.
%T A BROWNIAN POPULATION MODEL
%J Journal of nonlinear sciences and its applications
%D 2010
%P 261-264
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.04/
%R 10.22436/jnsa.003.04.04
%G en
%F JNSA_2010_3_4_a3
LAKSHMI, B. S. A BROWNIAN POPULATION MODEL. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 261-264. doi : 10.22436/jnsa.003.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.04/

[1] M. Braun Differential equations and their applications, Springer-Verlag, 4th ed., 1993

[2] B. S. Lakshmi Oscillating Population Models, Chaos, Solitons and Fractals, Volume 16 (2003), pp. 183-186

[3] Pielou, E. C. Mathematical Ecology, John Wiley, New York, 1976

[4] Reif, F. Fundamentals of statistical and thermal physics, McGraw Hill, Singapore, 1988

[5] Werner, S.; Weigelhofer, S.; Kenneth, L. Ordinary Differential Equations and Applications, Albion Publishing Chichester, , 1998

Cité par Sources :