Voir la notice de l'article provenant de la source International Scientific Research Publications
ZHOU, JUN 1
@article{JNSA_2010_3_4_a1, author = {ZHOU, JUN}, title = {GLOBAL {EXISTENCE} {AND} {\(L^\infty\)} {ESTIMATES} {OF} {SOLUTIONS} {FOR} {A} {QUASILINEAR} {PARABOLIC} {SYSTEM}}, journal = {Journal of nonlinear sciences and its applications}, pages = {245-255}, publisher = {mathdoc}, volume = {3}, number = {4}, year = {2010}, doi = {10.22436/jnsa.003.04.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.02/} }
TY - JOUR AU - ZHOU, JUN TI - GLOBAL EXISTENCE AND \(L^\infty\) ESTIMATES OF SOLUTIONS FOR A QUASILINEAR PARABOLIC SYSTEM JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 245 EP - 255 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.02/ DO - 10.22436/jnsa.003.04.02 LA - en ID - JNSA_2010_3_4_a1 ER -
%0 Journal Article %A ZHOU, JUN %T GLOBAL EXISTENCE AND \(L^\infty\) ESTIMATES OF SOLUTIONS FOR A QUASILINEAR PARABOLIC SYSTEM %J Journal of nonlinear sciences and its applications %D 2010 %P 245-255 %V 3 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.02/ %R 10.22436/jnsa.003.04.02 %G en %F JNSA_2010_3_4_a1
ZHOU, JUN. GLOBAL EXISTENCE AND \(L^\infty\) ESTIMATES OF SOLUTIONS FOR A QUASILINEAR PARABOLIC SYSTEM. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 245-255. doi : 10.22436/jnsa.003.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.02/
[1] Gradient estimates for degenerate diffusion equations, Math. Ann., Volume 259 (1982), pp. 53-70
[2] \(L^\infty\) estimates of solution for the evolutionm-Laplacian equation with initial value in \(L^q(\Omega)\), Nonlinear Analysis, Volume 48 (2002), pp. 607-616
[3] Global existence and blow-up for a nonlinear reaction-diffusion system, J. Math. Anal. Appl., Volume 212 (2) (1997), pp. 481-492
[4] Degenerate Parabolic Equations, Springer-Verlag, New York, 1993
[5] A maximum principle for semilinear parabolic systems and applications, Nonlinear Analysis, Volume 45 (2001), pp. 825-837
[6] A semilinear parabolic system in a bounded domain, Ann. Mat. Pura. Appl., Volume 4 (1993), pp. 315-336
[7] Quelques Méthodes de Resolution des Problémes aux Limites Nonlineaires, Dunod, Paris, 1969
[8] Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, 1969
[9] Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations, Nonlinear Analysis, Volume 10 (3) (1986), pp. 299-314
[10] Global existence and gradient estimates for quasilinear parabolic equations of m-laplacian type with a nonlinear convection term, J. Diff. Eqn., Volume 162 (2000), pp. 224-250
[11] \(L^\infty\) estimates of solutions of some nonlinear degenerate parabolic equations, Nonlinear Analysis., Volume 18 (1992), pp. 413-426
[12] Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. RIMS. Kyoto Univ., Volume 8 (1972-1973), pp. 221-229
[13] Global existence and finite time blow up for a reaction-diffusion system, Z.angew. Math. Phys., Volume 51 (2000), pp. 160-167
[14] Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition, Appl. Math. Letters, Volume 20 (2007), pp. 142-147
[15] Extinction and positivity for the evolution p-laplace equation in \(\mathbb{R}^N\), Nonlinear Analysis, Volume 60 (2005), pp. 1085-1091
[16] Critical blow-up and extinction exponents for non-Newton polytropic filtration equation with source, Bull. Korean Math. Soc., Volume 46 (2009), pp. 1159-1173
Cité par Sources :