GLOBAL EXISTENCE AND $L^\infty$ ESTIMATES OF SOLUTIONS FOR A QUASILINEAR PARABOLIC SYSTEM
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 245-255.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the global existence, $L^\infty$ estimates and decay estimates of solutions for the quasilinear parabolic system $u_t = \nabla .(\mid\nabla u\mid^m\nabla u)+f(u, v), v_t = \nabla . (\mid \nabla v\mid^n\nabla v)+g(u, v)$ with zero Dirichlet boundary condition in a bounded domain ­ $\Omega\subset R^N$.
DOI : 10.22436/jnsa.003.04.02
Classification : 35K55, 35K57
Keywords: Global existence, quasilinear parabolic system, \(L^\infty\) estimates and decay estimates.

ZHOU, JUN 1

1 School of mathematics and statistics, Southwest University, Chongqing, 400715, P. R. China
@article{JNSA_2010_3_4_a1,
     author = {ZHOU, JUN},
     title = {GLOBAL {EXISTENCE} {AND} {\(L^\infty\)}  {ESTIMATES} {OF} {SOLUTIONS} {FOR} {A} {QUASILINEAR} {PARABOLIC} {SYSTEM}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {245-255},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {2010},
     doi = {10.22436/jnsa.003.04.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.02/}
}
TY  - JOUR
AU  - ZHOU, JUN
TI  - GLOBAL EXISTENCE AND \(L^\infty\)  ESTIMATES OF SOLUTIONS FOR A QUASILINEAR PARABOLIC SYSTEM
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 245
EP  - 255
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.02/
DO  - 10.22436/jnsa.003.04.02
LA  - en
ID  - JNSA_2010_3_4_a1
ER  - 
%0 Journal Article
%A ZHOU, JUN
%T GLOBAL EXISTENCE AND \(L^\infty\)  ESTIMATES OF SOLUTIONS FOR A QUASILINEAR PARABOLIC SYSTEM
%J Journal of nonlinear sciences and its applications
%D 2010
%P 245-255
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.02/
%R 10.22436/jnsa.003.04.02
%G en
%F JNSA_2010_3_4_a1
ZHOU, JUN. GLOBAL EXISTENCE AND \(L^\infty\)  ESTIMATES OF SOLUTIONS FOR A QUASILINEAR PARABOLIC SYSTEM. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 4, p. 245-255. doi : 10.22436/jnsa.003.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.04.02/

[1] Alikakos, N. D.; R. Rostamian Gradient estimates for degenerate diffusion equations, Math. Ann., Volume 259 (1982), pp. 53-70

[2] Chen, C. S.; R. Y. Wang \(L^\infty\) estimates of solution for the evolutionm-Laplacian equation with initial value in \(L^q(­\Omega)\), Nonlinear Analysis, Volume 48 (2002), pp. 607-616

[3] Chen, H. W. Global existence and blow-up for a nonlinear reaction-diffusion system, J. Math. Anal. Appl., Volume 212 (2) (1997), pp. 481-492

[4] Dibenedetto, E. Degenerate Parabolic Equations, Springer-Verlag, New York, 1993

[5] Dickstein, F.; Escobedo, M. A maximum principle for semilinear parabolic systems and applications, Nonlinear Analysis, Volume 45 (2001), pp. 825-837

[6] Escobedo, M.; Herrero, M. A. A semilinear parabolic system in a bounded domain, Ann. Mat. Pura. Appl., Volume 4 (1993), pp. 315-336

[7] Lions, J. L. Quelques Méthodes de Resolution des Problémes aux Limites Nonlineaires, Dunod, Paris, 1969

[8] Ladyzenskaya, O. A.; Solonnikov, V. A.; Uraltseva, N. N. Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, 1969

[9] Nakao, M. Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations, Nonlinear Analysis, Volume 10 (3) (1986), pp. 299-314

[10] Nakao, M.; Chen, C. S. Global existence and gradient estimates for quasilinear parabolic equations of m-laplacian type with a nonlinear convection term, J. Diff. Eqn., Volume 162 (2000), pp. 224-250

[11] Ohara, Y. \(L^\infty\) estimates of solutions of some nonlinear degenerate parabolic equations, Nonlinear Analysis., Volume 18 (1992), pp. 413-426

[12] M. Tsutsumi Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. RIMS. Kyoto Univ., Volume 8 (1972-1973), pp. 221-229

[13] Wang, M. X. Global existence and finite time blow up for a reaction-diffusion system, Z.angew. Math. Phys., Volume 51 (2000), pp. 160-167

[14] Wang, Z. J.; Yin, J. X.; Wang, C. P. Critical exponents of the non-Newtonian polytropic filtration equation with nonlinear boundary condition, Appl. Math. Letters, Volume 20 (2007), pp. 142-147

[15] Yuan, H. J.; Lian, S. Z.; Gao, W. J.; Xu, X. J.; Cao, C. L. Extinction and positivity for the evolution p-laplace equation in \(\mathbb{R}^N\), Nonlinear Analysis, Volume 60 (2005), pp. 1085-1091

[16] Zhou, J.; Mu, C. L. Critical blow-up and extinction exponents for non-Newton polytropic filtration equation with source, Bull. Korean Math. Soc., Volume 46 (2009), pp. 1159-1173

Cité par Sources :