STABILIZABILITY OF A CLASS OF NONLINEAR SYSTEMS USING HYBRID CONTROLLERS
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 3, p. 203-221.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper develops hybrid control strategies for stabilizing a class of nonlinear systems. Common Lyapunov functions and switched Lyapunov functions are used to establish easily verifiable criteria for the stabilizability of weakly nonlinear systems under switched and impulsive control. Three types of controller switching rules are studied: time-dependent (synchronous), state-dependent (asynchronous) and average dwell-time satisfying. Conditions are developed for stabilizability under arbitrary switching, as well as less strict conditions for prespecified switching rules. Examples are given, with simulations, to illustrate the theorems developed.
DOI : 10.22436/jnsa.003.03.07
Classification : 93C30, 37C75, 93D15
Keywords: Hybrid systems, Switched systems, Stabilizability, Switched control, Impulsive control, Synchronous switching, State-dependent switching, Dwell-time switching.

LIU , XINZHI  1 ; STECHLINSKI, PETER 1

1 Department of Applied Mathematics, University of Waterloo, Ontario N2L 3G1, Waterloo, Canada
@article{JNSA_2010_3_3_a6,
     author = {LIU , XINZHI  and STECHLINSKI, PETER},
     title = {STABILIZABILITY {OF} {A} {CLASS} {OF} {NONLINEAR} {SYSTEMS} {USING} {HYBRID} {CONTROLLERS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {203-221},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2010},
     doi = {10.22436/jnsa.003.03.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.07/}
}
TY  - JOUR
AU  - LIU , XINZHI 
AU  - STECHLINSKI, PETER
TI  - STABILIZABILITY OF A CLASS OF NONLINEAR SYSTEMS USING HYBRID CONTROLLERS
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 203
EP  - 221
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.07/
DO  - 10.22436/jnsa.003.03.07
LA  - en
ID  - JNSA_2010_3_3_a6
ER  - 
%0 Journal Article
%A LIU , XINZHI 
%A STECHLINSKI, PETER
%T STABILIZABILITY OF A CLASS OF NONLINEAR SYSTEMS USING HYBRID CONTROLLERS
%J Journal of nonlinear sciences and its applications
%D 2010
%P 203-221
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.07/
%R 10.22436/jnsa.003.03.07
%G en
%F JNSA_2010_3_3_a6
LIU , XINZHI ; STECHLINSKI, PETER. STABILIZABILITY OF A CLASS OF NONLINEAR SYSTEMS USING HYBRID CONTROLLERS. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 3, p. 203-221. doi : 10.22436/jnsa.003.03.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.07/

[1] Bacciotti, A.; Mazzi, L. An invariance principle for nonlinear switched systems, Systems & Control Letters , Volume 54 (2005), pp. 1109-1119

[2] Branicky, M. S. Stability of switched and hybrid systems , Proceedings of the 33rd IEEE Conference on Decision and Control , Volume 4 (1994), pp. 3498-3503

[3] Multiple lyapunov functions and other analysis tools for switched and hybrid systems, IEEE Transactions on Automatic Control , Volume 43 (1998), pp. 475-482

[4] Daafouz, J.; Riedinger, P.; Iung, C. Stability analysis and control synthesis for switched systems: A switched lyapunov function approach, IEEE Transactions on Automatic Control , Volume 47 (2002), pp. 1883-1887

[5] Davrazos, G.; Koussoulas, N. T. A review of stability results for switched and hybrid systems, Proceedings of 9th Mediterranean Conference on Control and Automation, , 2001

[6] Decarlo, R. A.; Branicky, M. S.; Pettersson, S.; Lennartson, B. Perspectives and results on the stability and stabilizability of hybrid systems , Proceedings of the IEEE , Volume 88 (2000), pp. 1069-1082

[7] Evans, R. J.; Savkin, A. V. Hybrid dynamical systems, Birkhauser, , 2002

[8] Guan, Zhi-Hong; Hill, D. J.; Shen, Xuemin On hybrid impulsive and switching systems and application to nonlinear control, IEEE Transactions on Automatic Control , Volume 50 (2005), pp. 1058-1062

[9] Guan, Zhi-Hong; Hill, D. J.; Yao, Jing A hybrid impulsive and switching control strategy for synchronization of nonlinear systems and application to chua's chaotic circuit, International Journal of Bifurcation and Chaos , Volume 16 (2006), pp. 229-238

[10] J. P. Hespanha Extending lasalle's invariance principle to switched linear systems, Proceedings of the 40th IEEE Conference on Decision and Control (2001), pp. 2496-2501

[11] Uniform stability of switched linear systems: Extensions of lasalle's invariance principle, IEEE Transactions on Automatic Control , Volume 49 (2004), pp. 470-482

[12] Hespanha, J. P.; Morse, A. S. Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control , Volume 3 (1999), pp. 2655-2660

[13] Kim, Sehjeong; Campbell, S. A.; Liu, Xinzhi Stability of a class of linear switching systems with time delay, IEEE Transactions on Circuits and Systems I: Regular Papers , Volume 53 (2006), pp. 384-393

[14] Li, Z.; Soh, Y.; Wen, C. Switched and impulsive systems: Analysis, design, and applications, Springer-Verlag, Berlin Heielberg, 2005

[15] Liberzon, D.; Morse, A. S. Basic problems in stability and design of switched systems, IEEE Control Systems Magazine , Volume 19 (1999), pp. 59-70

[16] Liu, Jun; Liu, Xinzhi; Xie, Wei-Chau On the \((h_0,h)\)-stabilization of switched nonlinear systems via state-dependent switching rule, Applied Mathematics and Computation , Volume 217 (2010), pp. 2067-2083

[17] Mori, Y.; Mori, T.; Kuroe, Y. A solution to the common lyapunov function problem for continuous-time systems, Proceedings of the 36th IEEE Conference on Decision and Control , Volume 4 (1997), pp. 3530-3531

[18] Moulay, E.; Bourdais, R.; Perruquetti, W. Stabilization of nonlinear switched systems using control lyapunov functions, Nonlinear analysis: Hybrid Systems , Volume 1 (2007), pp. 482-490

[19] Narendra, K. S.; Balakrishnan, J. A common lyapunov function for stable lti systems with commuting a-matrices, IEEE Transactions on Automatic Control , Volume 39 (1994), pp. 2469-2471

[20] Pettersson, S.; B. Lennartson Stability and robustness for hybrid systems, Proceedings of the 35th IEEE Conference on Decision and Control , , 1996

[21] Shorten, R. N.; Cairbre, F. O.; Curran, P. On the dynamic instability of a class of switching system, International Journal of Control , Volume 79 (2006), pp. 630-635

[22] Shorten, Robert; Wirth, Fabian; Mason, Oliver; Wulff, Kai; King, Christopher Stability criteria for switched and hybrid systems, SIAM Review , Volume 49 (2007), pp. 545-592

[23] Schaft, A. van der; Schumacher, H. An introduction to hybrid dynamical systems, Springer-Verlag, London, 2000

[24] Ye, Hui; Michel, A. N.; Hou, Ling Stability theory for hybrid dynamical systems, IEEE Transactions on Automatic Control , Volume 43 (1998), pp. 461-474

Cité par Sources :