COUPLED FIXED POINTS OF SET VALUED MAPPINGS IN PARTIALLY ORDERED METRIC SPACES
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 3, p. 179-185.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let $(X,\preceq)$ be a partially ordered set and $d$ be a metric on $X$ such that $(X, d)$ is a complete metric space. Let $F : X \times X \rightsquigarrow X$ be a mixed monotone set valued mapping. We obtain sufficient conditions for the existence of a coupled fixed point of $F$.
DOI : 10.22436/jnsa.003.03.03
Classification : 47H10, 47H04, 47H07
Keywords: Coupled fixed point, partially ordered set, metric space, set valued mapping.

BEG , ISMAT  1 ; BUTT, ASMA RAS 1

1 Centre for Advanced Studies in Mathematics, Lahore University of Management Sciences, 54792-Lahore, Pakistan
@article{JNSA_2010_3_3_a2,
     author = {BEG , ISMAT  and BUTT, ASMA RAS},
     title = {COUPLED {FIXED} {POINTS} {OF} {SET} {VALUED} {MAPPINGS} {IN} {PARTIALLY} {ORDERED} {METRIC} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {179-185},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {2010},
     doi = {10.22436/jnsa.003.03.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.03/}
}
TY  - JOUR
AU  - BEG , ISMAT 
AU  - BUTT, ASMA RAS
TI  - COUPLED FIXED POINTS OF SET VALUED MAPPINGS IN PARTIALLY ORDERED METRIC SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 179
EP  - 185
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.03/
DO  - 10.22436/jnsa.003.03.03
LA  - en
ID  - JNSA_2010_3_3_a2
ER  - 
%0 Journal Article
%A BEG , ISMAT 
%A BUTT, ASMA RAS
%T COUPLED FIXED POINTS OF SET VALUED MAPPINGS IN PARTIALLY ORDERED METRIC SPACES
%J Journal of nonlinear sciences and its applications
%D 2010
%P 179-185
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.03/
%R 10.22436/jnsa.003.03.03
%G en
%F JNSA_2010_3_3_a2
BEG , ISMAT ; BUTT, ASMA RAS. COUPLED FIXED POINTS OF SET VALUED MAPPINGS IN PARTIALLY ORDERED METRIC SPACES. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 3, p. 179-185. doi : 10.22436/jnsa.003.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.03/

[1] Beg, I. Random fixed points of increasing compact maps, Archivum Mathematicum , Volume 37 (2001), pp. 329-332

[2] Beg, I.; Azam, A. Fixed points of asymptotically regular multivalued mappings, J. Austral. Math. Soc. (Series-A) , Volume 53(3) (1992), pp. 313-326

[3] Beg, I.; Butt, A. R. Fixed point for set valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. , Volume 71 (2009), pp. 3699-3704

[4] Beg, I.; A. R. Butt Fixed points for weakly compatible mappings satisfying an implicit relation in partially ordered metric spaces, Carpathian J. Math. , Volume 25 (2009), pp. 1-12

[5] Beg, I.; Butt, A. R. Common fixed point for generalized set valued contractions satisfying an implicit relation in partially ordered metric spaces, Mathematical Communications, Volume 15 (2010), pp. 65-76

[6] Beg, I.; Latif, A.; Ali, R.; Azam, A. Coupled fixed points of mixed monotone operators on probabilistic Banach spaces, Archivum Mathematicum , Volume 37 (2001), pp. 1-8

[7] Bhaskar, T. G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393

[8] Daffer, P. Z. Fixed points of generalized contractive multivalued mappings, J. Math. Anal. Appl., Volume 192 (1995), pp. 655-666

[9] Daffer, P. Z.; Kaneko, H.; Li, W. On a conjecture of S. Reich, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 3159-3162

[10] Feng, Y.; S. Liu Fixed point theorems for multivalued contractive mappings and multivaled Caristi type mappings, J. Math. Anal. Appl., Volume 317 (2006), pp. 103-112

[11] Guo, D.; Lakshmikantham, V. Coupled fixed points of nonlinear operators with applications, Nonlinear. Anal., Volume 11 (1987), pp. 623-632

[12] Harjani, J.; Sadarangani, K. Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. , Volume 71 (2009), pp. 3403-3410

[13] Harjani, J.; Sadarangani, K. Generalized contractions in partially ordered mtric spaces and applications to ordinary differential equations, Nonlinear Anal. doi:10.1016/j.na.2009.08.003, in press, 2009

[14] Kirk, W. A.; Goebel, K. Topics in Metric Fixed Point Theory , Cambridge University Press, Cambridge , 1990

[15] Klim, D.; D. Wardowski Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., Volume 334 (2007), pp. 132-139

[16] Nadler, S. B. Multivalued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488

[17] Nieto, J. J.; Pouso, R. L.; Rodríguez-López, R. Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 2505-2517

[18] Nieto, J. J.; Rodríguez-López, R. Contractive mapping theorms in partially ordered sets and applications to ordinary differential equations, Order, Volume 22 (2005), pp. 223-239

[19] Nieto, J. J.; Rodríguez-López, R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sinica, (English Ser.), Volume 23 (2007), pp. 2205-2212

[20] O'Regan, D.; Petrusel, A. Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 1241-1252

[21] Petrusel, A.; Rus, I. A. Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc., Volume 134 (2005), pp. 411-418

[22] Qing, C. Y. On a fixed point problem of Reich, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 3085-3088

[23] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorm in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 1435-1443

[24] Reich, S. Fixed points of contractive functions, Boll. Unione. Mat. Ital., Volume 4 (1972), pp. 26-42

[25] Wu, Y. New fixed point theorems and applications of mixed monotone operator, J. Math. Anal. Appl., Volume 341 (2008), pp. 883-893

[26] Zeidler, E. Nonlinear Functional Analysis and its Applications I: Fixed point Theorems, Springer Verlag, New York, 1985

[27] Zhitao, Z. New fixed point theorems of mixed monotone operators and applications, J. Math. Anal. Appl., Volume 204 (1996), pp. 307-319

Cité par Sources :