Voir la notice de l'article provenant de la source International Scientific Research Publications
BARUAH, PALLAV KUMAR 1 ; BHARADWAJ, B V K 1 ; VENKATESULU, M 2
@article{JNSA_2010_3_3_a1, author = {BARUAH, PALLAV KUMAR and BHARADWAJ, B V K and VENKATESULU, M}, title = {REDUCTION {OF} {AN} {OPERATOR} {EQUATION} {IN} {TO} {AN} {EQUIVALENT} {BIFURCATION} {EQUATION} {THROUGH} {SCHAUDERS} {FIXED} {POINT} {THEOREM}}, journal = {Journal of nonlinear sciences and its applications}, pages = {164-178}, publisher = {mathdoc}, volume = {3}, number = {3}, year = {2010}, doi = {10.22436/jnsa.003.03.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.02/} }
TY - JOUR AU - BARUAH, PALLAV KUMAR AU - BHARADWAJ, B V K AU - VENKATESULU, M TI - REDUCTION OF AN OPERATOR EQUATION IN TO AN EQUIVALENT BIFURCATION EQUATION THROUGH SCHAUDERS FIXED POINT THEOREM JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 164 EP - 178 VL - 3 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.02/ DO - 10.22436/jnsa.003.03.02 LA - en ID - JNSA_2010_3_3_a1 ER -
%0 Journal Article %A BARUAH, PALLAV KUMAR %A BHARADWAJ, B V K %A VENKATESULU, M %T REDUCTION OF AN OPERATOR EQUATION IN TO AN EQUIVALENT BIFURCATION EQUATION THROUGH SCHAUDERS FIXED POINT THEOREM %J Journal of nonlinear sciences and its applications %D 2010 %P 164-178 %V 3 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.02/ %R 10.22436/jnsa.003.03.02 %G en %F JNSA_2010_3_3_a1
BARUAH, PALLAV KUMAR; BHARADWAJ, B V K; VENKATESULU, M. REDUCTION OF AN OPERATOR EQUATION IN TO AN EQUIVALENT BIFURCATION EQUATION THROUGH SCHAUDERS FIXED POINT THEOREM. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 3, p. 164-178. doi : 10.22436/jnsa.003.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.03.02/
[1] Common Fixed Point Theorems for Hybrid Mappings Satysfying Generalised Contractive Conditions, Journal of Nonlinear Sciences and Applications, Volume 2 (2009), pp. 136-145
[2] Common Fixed Point Theorems in cone Metric Spaces , Journal of Nonlinear Sciences and Applications, Volume 1 (2009), pp. 204-213
[3] Functional analysis and Galerkin's Method, Mich. Math J., Volume 11 (1964), p. 385-359
[4] Functional analysis and nonlinear differential equations, Contributions to differential equations, vol 1, No 2, Interscience, Newyork, 1956
[5] An Alternative Method for Boundary Value Problems with Ordinary Differential Equations , Riv. Math. Univ. Parma, Volume 4 (1983), pp. 15-25
[6] An Existential Analysis for a Nonlinear Differential Equation with Nonlinear Multipoint Boundary Conditions via the alternative mathod, Att. Sem. Mat. Fis.Univ, Modena, XXXII (1983), pp. 287-307
[7] An Existential Analysis for a Multipoint Boundary Value Problem via Alternative Method, Riv. Math. Univ. Parma, Volume 4 (1984), pp. 183-193
[8] Functional Analysis and Applied Mathematics, Uspehi Mat.Nauk, Volume 3 (1948), pp. 89-185
[9] Functional Analysis and Two Point Differential operators, Longman scientific and Technical, Harlow, 1986
[10] An existential analysis for nonlinear boundary value problems, SIAM J. Appl. Math., Volume 19 (1970), pp. 109-207
[11] Characterization of Maximal, Minimal and Inverse Operators and an Existence Theorem for Coupled Ordinary Differential Operator, International Journal of Mathematics and Analysis, Volume 1 (2009), pp. 25-56
[12] Green's Matrix for Linear Coupled Ordinary Differential Operator, International Journal of Mathematics and Analysis, Volume 1(1) (2009), pp. 57-82
[13] Positive Solutions for a Class of Singular Two Point Boundary Value Problems, Journal of Nonlinear Sciences and Applications, Volume 2 (2009), pp. 126-135
[14] Study of a prey-predator dynamics under the simultaneous effectof toxicant and disease, The Journal of Nonlinear Sciences and Applications, Volume 1 (2008), pp. 36-44
[15] A Existence theorem for IVPs of Coupled Ordinary Differential Equations, International Journal of Differential Equations and Applications, Volume 10 (2005), pp. 435-447
Cité par Sources :