AN EFFICIENT APPLICATIONS OF HES VARIATIONAL ITERATION METHOD BASED ON A RELIABLE MODIFICATION OF ADOMIAN ALGORITHM FOR NONLINEAR BOUNDARY VALUE PROBLEMS
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 152-156.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the He's variational iteration method (VIM) based on a reliable modification of Adomian algorithm has been used to obtain solutions of the nonlinear boundary value problems (BVP). Comparison of the result obtained by the present method with that obtained by Adomian method [A. M.Wazwaz, Found Phys. Lett. 13 (2000) 493 and G. L. Liu, Modern Mathematical and Mechanics, (1995) 643 ] reveals that the present method is very effective and convenient.
DOI : 10.22436/jnsa.003.02.08
Classification : 37K40, 76B25
Keywords: Adomian polynomials, Boundary value problems, Variational iteration method.

GOLBABAI, A. 1 ; SAYEVAND, K. 1

1 School of Mathematics, Iran University of Science and Technology, Narmak, P. O. BOX 16844, Tehran, Iran
@article{JNSA_2010_3_2_a7,
     author = {GOLBABAI, A. and SAYEVAND, K.},
     title = {AN {EFFICIENT} {APPLICATIONS} {OF} {HES} {VARIATIONAL} {ITERATION} {METHOD} {BASED} {ON} {A} {RELIABLE} {MODIFICATION} {OF} {ADOMIAN} {ALGORITHM} {FOR} {NONLINEAR} {BOUNDARY} {VALUE} {PROBLEMS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {152-156},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2010},
     doi = {10.22436/jnsa.003.02.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.08/}
}
TY  - JOUR
AU  - GOLBABAI, A.
AU  - SAYEVAND, K.
TI  - AN EFFICIENT APPLICATIONS OF HES VARIATIONAL ITERATION METHOD BASED ON A RELIABLE MODIFICATION OF ADOMIAN ALGORITHM FOR NONLINEAR BOUNDARY VALUE PROBLEMS
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 152
EP  - 156
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.08/
DO  - 10.22436/jnsa.003.02.08
LA  - en
ID  - JNSA_2010_3_2_a7
ER  - 
%0 Journal Article
%A GOLBABAI, A.
%A SAYEVAND, K.
%T AN EFFICIENT APPLICATIONS OF HES VARIATIONAL ITERATION METHOD BASED ON A RELIABLE MODIFICATION OF ADOMIAN ALGORITHM FOR NONLINEAR BOUNDARY VALUE PROBLEMS
%J Journal of nonlinear sciences and its applications
%D 2010
%P 152-156
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.08/
%R 10.22436/jnsa.003.02.08
%G en
%F JNSA_2010_3_2_a7
GOLBABAI, A.; SAYEVAND, K. AN EFFICIENT APPLICATIONS OF HES VARIATIONAL ITERATION METHOD BASED ON A RELIABLE MODIFICATION OF ADOMIAN ALGORITHM FOR NONLINEAR BOUNDARY VALUE PROBLEMS. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 152-156. doi : 10.22436/jnsa.003.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.08/

[1] Abdou, M. A.; A. A. Soliman Variational iteration method for solving Burger's and coupled Burger's equations, J. Comput. Appl. Math., Volume 181 (2005), pp. 245-251

[2] Abdou, M. A.; Soliman, A. A. New applications of variational iteration method, Physica D, Volume 211 (2005), pp. 1-18

[3] Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method, , Kluwer, 1994

[4] Borhanifar, A.; Jafari, H.; Karimi, S. A. New solitions and periodic solutions for the Kadomtsev-Petviashvili equation, J. Nonlinear Sci. Appl. , Volume 1 (2008), pp. 224-229

[5] He, J. H. Variational iteration method -Some recent results and new interpretations, J. Comput. Appl. Math., Volume 207 (1) (2007), pp. 3-17

[6] He, J. H. Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals , Volume 19 (2004), pp. 847-851

[7] He, J. H. Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., Volume 114 (2000), pp. 115-123

[8] He, J. H. Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals, Volume 19 (2007), pp. 847-851

[9] He, J. H. Some asymptotic methods for strongly nonlinear equations , Int. J. Mod. Phys. B, Volume 20 (10) (2006), pp. 1141-1199

[10] He, J. H. A new approach to nonlinear partial differential equation, Commun. Nonlinear Sci. Numer. Simulation , Volume 2 (1997), pp. 1-230

[11] Inokuti, M.; al., et General use of the Lagrange multiplier in non-linear mathematical physics, in: S. Nemat-Nasser (Ed.), Variational Method in the Mechanics of Solids, Pergamon Press, Oxford (1978), pp. 156-162

[12] Momani, S.; S. Abuasad Application of He's variational iteration method to Helmholtz equation, Chaocs, Solitons and Fractals, Volume 27 (2006), pp. 1119-1123

[13] Sayed, A. M. A.; Ghashem, H. H. Solvability of nonlinear Hamerstein quadratic integral equations, J. Nonlinear Sci. Appl. , Volume 2 (2009), pp. 152-160

[14] Wazwaz, A. M. The variational iteration method for rational solutions for KdV, K(2,2),Burgers, and cubic Boussinesq equations, J. Comput. Appl. Math., Volume 207(1) (2007), pp. 18-23

[15] Wazwaz, A. M. A new algorithm for calculating Adomian polynomials for nonlinear operator, Applied Mathematics and Computation, Volume 111 (2000), pp. 53-69

[16] Liu, G. L. Weighted residual decomposition method in nonlinear applied mathematics, in: Proceedings of 6th Congress of Modern Mathematical and Mechanics, Suzhou, China, (in Chinese). (1995), pp. 643-648

[17] Wazwaz, A. M. A note on using Adomian decomposition method for solving boundary value problems, Foundations of Physics Letters, Volume 13(5) (2000), pp. 493-498

[18] Yao, L.; Chang, J. R. Variational principles for nonlinear Schrodinger equation with high nonlinearity, J. Nonlinear Sci. Appl. , Volume 1 (2008), pp. 1-4

Cité par Sources :