Voir la notice de l'article provenant de la source International Scientific Research Publications
GOLBABAI, A. 1 ; SAYEVAND, K. 1
@article{JNSA_2010_3_2_a7, author = {GOLBABAI, A. and SAYEVAND, K.}, title = {AN {EFFICIENT} {APPLICATIONS} {OF} {HES} {VARIATIONAL} {ITERATION} {METHOD} {BASED} {ON} {A} {RELIABLE} {MODIFICATION} {OF} {ADOMIAN} {ALGORITHM} {FOR} {NONLINEAR} {BOUNDARY} {VALUE} {PROBLEMS}}, journal = {Journal of nonlinear sciences and its applications}, pages = {152-156}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2010}, doi = {10.22436/jnsa.003.02.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.08/} }
TY - JOUR AU - GOLBABAI, A. AU - SAYEVAND, K. TI - AN EFFICIENT APPLICATIONS OF HES VARIATIONAL ITERATION METHOD BASED ON A RELIABLE MODIFICATION OF ADOMIAN ALGORITHM FOR NONLINEAR BOUNDARY VALUE PROBLEMS JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 152 EP - 156 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.08/ DO - 10.22436/jnsa.003.02.08 LA - en ID - JNSA_2010_3_2_a7 ER -
%0 Journal Article %A GOLBABAI, A. %A SAYEVAND, K. %T AN EFFICIENT APPLICATIONS OF HES VARIATIONAL ITERATION METHOD BASED ON A RELIABLE MODIFICATION OF ADOMIAN ALGORITHM FOR NONLINEAR BOUNDARY VALUE PROBLEMS %J Journal of nonlinear sciences and its applications %D 2010 %P 152-156 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.08/ %R 10.22436/jnsa.003.02.08 %G en %F JNSA_2010_3_2_a7
GOLBABAI, A.; SAYEVAND, K. AN EFFICIENT APPLICATIONS OF HES VARIATIONAL ITERATION METHOD BASED ON A RELIABLE MODIFICATION OF ADOMIAN ALGORITHM FOR NONLINEAR BOUNDARY VALUE PROBLEMS. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 152-156. doi : 10.22436/jnsa.003.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.08/
[1] Variational iteration method for solving Burger's and coupled Burger's equations, J. Comput. Appl. Math., Volume 181 (2005), pp. 245-251
[2] New applications of variational iteration method, Physica D, Volume 211 (2005), pp. 1-18
[3] Solving Frontier Problems of Physics: The Decomposition Method, , Kluwer, 1994
[4] New solitions and periodic solutions for the Kadomtsev-Petviashvili equation, J. Nonlinear Sci. Appl. , Volume 1 (2008), pp. 224-229
[5] Variational iteration method -Some recent results and new interpretations, J. Comput. Appl. Math., Volume 207 (1) (2007), pp. 3-17
[6] Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals , Volume 19 (2004), pp. 847-851
[7] Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput., Volume 114 (2000), pp. 115-123
[8] Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos, Solitons and Fractals, Volume 19 (2007), pp. 847-851
[9] Some asymptotic methods for strongly nonlinear equations , Int. J. Mod. Phys. B, Volume 20 (10) (2006), pp. 1141-1199
[10] A new approach to nonlinear partial differential equation, Commun. Nonlinear Sci. Numer. Simulation , Volume 2 (1997), pp. 1-230
[11] General use of the Lagrange multiplier in non-linear mathematical physics, in: S. Nemat-Nasser (Ed.), Variational Method in the Mechanics of Solids, Pergamon Press, Oxford (1978), pp. 156-162
[12] Application of He's variational iteration method to Helmholtz equation, Chaocs, Solitons and Fractals, Volume 27 (2006), pp. 1119-1123
[13] Solvability of nonlinear Hamerstein quadratic integral equations, J. Nonlinear Sci. Appl. , Volume 2 (2009), pp. 152-160
[14] The variational iteration method for rational solutions for KdV, K(2,2),Burgers, and cubic Boussinesq equations, J. Comput. Appl. Math., Volume 207(1) (2007), pp. 18-23
[15] A new algorithm for calculating Adomian polynomials for nonlinear operator, Applied Mathematics and Computation, Volume 111 (2000), pp. 53-69
[16] Weighted residual decomposition method in nonlinear applied mathematics, in: Proceedings of 6th Congress of Modern Mathematical and Mechanics, Suzhou, China, (in Chinese). (1995), pp. 643-648
[17] A note on using Adomian decomposition method for solving boundary value problems, Foundations of Physics Letters, Volume 13(5) (2000), pp. 493-498
[18] Variational principles for nonlinear Schrodinger equation with high nonlinearity, J. Nonlinear Sci. Appl. , Volume 1 (2008), pp. 1-4
Cité par Sources :