A GENERALIZATION OF NADLERS FIXED POINT THEOREM
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 148-151.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove a generalization of Nadler's fixed point theorem [S.B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30 (1969) 475-487].
DOI : 10.22436/jnsa.003.02.07
Classification : 54H25
Keywords: Hausdorff metric, Set-valued contraction, Nadler's fixed point theorem.

GORDJI, M. ESHAGHI 1 ; BAGHANI, H. 1 ; KHODAEI , H.  1 ; RAMEZANI, M. 1

1 Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
@article{JNSA_2010_3_2_a6,
     author = {GORDJI, M. ESHAGHI and BAGHANI, H. and KHODAEI , H.  and RAMEZANI, M.},
     title = {A {GENERALIZATION} {OF} {NADLERS} {FIXED} {POINT} {THEOREM}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {148-151},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2010},
     doi = {10.22436/jnsa.003.02.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.07/}
}
TY  - JOUR
AU  - GORDJI, M. ESHAGHI
AU  - BAGHANI, H.
AU  - KHODAEI , H. 
AU  - RAMEZANI, M.
TI  - A GENERALIZATION OF NADLERS FIXED POINT THEOREM
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 148
EP  - 151
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.07/
DO  - 10.22436/jnsa.003.02.07
LA  - en
ID  - JNSA_2010_3_2_a6
ER  - 
%0 Journal Article
%A GORDJI, M. ESHAGHI
%A BAGHANI, H.
%A KHODAEI , H. 
%A RAMEZANI, M.
%T A GENERALIZATION OF NADLERS FIXED POINT THEOREM
%J Journal of nonlinear sciences and its applications
%D 2010
%P 148-151
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.07/
%R 10.22436/jnsa.003.02.07
%G en
%F JNSA_2010_3_2_a6
GORDJI, M. ESHAGHI; BAGHANI, H.; KHODAEI , H. ; RAMEZANI, M. A GENERALIZATION OF NADLERS FIXED POINT THEOREM. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 148-151. doi : 10.22436/jnsa.003.02.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.07/

[1] Banach, S. Sure operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. , Volume 3 (1922), pp. 133-181

[2] Hardy, G. E.; Rogers, T. D. A generalization of a fixed point theorem of Reich , Canad. Math. Bull. , Volume 16 (1973), pp. 201-206

[3] Jr., N.B. Nadler Multi-valued contraction mappings, Pacific J. Math. , Volume 30 (1969), pp. 475-488

[4] Reich, S. Kannan's fixed point theorem, Boll. Un. Mat. Ital., Volume 4 (1971), pp. 1-11

[5] Reich, S. Fixed points of contractive functions, Boll. Un. Mat. Ital. , Volume 5 (1972), pp. 26-42

[6] Rus, I. A. Generalized Contractions and Applications, Cluj Univercity Press, Cluj-Nappa, 2001

Cité par Sources :