APPLICATION OF BISHOP-PHELPS THEOREM IN THE APPROXIMATION THEORY
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 144-147.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we apply the Bishop-Phelps Theorem to show that if $X$ is a Banach space and $G\subseteq X$ is a maximal subspace so that $G^\perp = \{x^* \in X^*\mid x^*(y) = 0; \forall y \in G\}$ is an L-summand in $X^*$, then $L^1(\Omega,G)$ is contained in a maximal proximinal subspace of $L^1(\Omega,X)$.
DOI : 10.22436/jnsa.003.02.06
Classification : 46E99
Keywords: Bishop-Phelps Theorem, support point, proximinality, L-projection.

ZARGHAMI, R. 1

1 Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
@article{JNSA_2010_3_2_a5,
     author = {ZARGHAMI, R.},
     title = {APPLICATION {OF} {BISHOP-PHELPS} {THEOREM} {IN} {THE} {APPROXIMATION} {THEORY}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {144-147},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2010},
     doi = {10.22436/jnsa.003.02.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.06/}
}
TY  - JOUR
AU  - ZARGHAMI, R.
TI  - APPLICATION OF BISHOP-PHELPS THEOREM IN THE APPROXIMATION THEORY
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 144
EP  - 147
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.06/
DO  - 10.22436/jnsa.003.02.06
LA  - en
ID  - JNSA_2010_3_2_a5
ER  - 
%0 Journal Article
%A ZARGHAMI, R.
%T APPLICATION OF BISHOP-PHELPS THEOREM IN THE APPROXIMATION THEORY
%J Journal of nonlinear sciences and its applications
%D 2010
%P 144-147
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.06/
%R 10.22436/jnsa.003.02.06
%G en
%F JNSA_2010_3_2_a5
ZARGHAMI, R. APPLICATION OF BISHOP-PHELPS THEOREM IN THE APPROXIMATION THEORY. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 144-147. doi : 10.22436/jnsa.003.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.06/

[1] Bishop, E.; Phelps, R. R. The support functionals of a convex set, Proc. Symposia in Pure Math. AMS. , Volume 7 (1963), pp. 27-35

[2] Harmand, P.; Werner, D.; Werner, W. M-ideals in Banach spaces and Banach algebras, Lecture Notes in Math. 1574, Springer, Berlin, Heidelberg, New York, 1993

[3] Hiai, F.; H. Umegaki Integrals, conditional expection, and martingales multivalued functions, J. Multivariate Anal. , Volume 7 (1977), pp. 149-182

[4] Khalil, R.; Said, F. Best approximation in \(L^1(­\Omega,X)\), Proceeding of the Amer. Math. Soc. , Volume 1 (1999), pp. 183-189

[5] P. Mani A characterization of convex set, Handbook of convex geometry , , 1993

[6] Phelps, R. R. The Bishop-Phelps Theorem in complex spaces: an open problem , Pure App. Math. , Volume 131 (1991), pp. 337-340

[7] Sababheh, M.; Khalil, R. Remarks on remotal sets in vector valued function spaces, The J. Nonlinear Sci. Appl. (2009), pp. 1-10

[8] I. Sadeqi Support functionals and their relation to the RNP, IJMMS, Volume 16 (2004), pp. 827-832

Cité par Sources :