Voir la notice de l'article provenant de la source International Scientific Research Publications
$\sum^n _{i=1} f(x_i - \frac{1}{ n} \sum^n _{j=1} x_j) = \sum^n _{i=1} f(x_i) - nf( \frac{1}{ n} \sum^n_{ i=1} x_i)\quad (n \geq 2)$ |
ZOLFAGHARI, S. 1
@article{JNSA_2010_3_2_a3, author = {ZOLFAGHARI, S.}, title = {APPROXIMATION {OF} {MIXED} {TYPE} {FUNCTIONAL} {EQUATIONS} {IN} {pBANACH} {SPACES}}, journal = {Journal of nonlinear sciences and its applications}, pages = {110-122}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2010}, doi = {10.22436/jnsa.003.02.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.04/} }
TY - JOUR AU - ZOLFAGHARI, S. TI - APPROXIMATION OF MIXED TYPE FUNCTIONAL EQUATIONS IN pBANACH SPACES JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 110 EP - 122 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.04/ DO - 10.22436/jnsa.003.02.04 LA - en ID - JNSA_2010_3_2_a3 ER -
%0 Journal Article %A ZOLFAGHARI, S. %T APPROXIMATION OF MIXED TYPE FUNCTIONAL EQUATIONS IN pBANACH SPACES %J Journal of nonlinear sciences and its applications %D 2010 %P 110-122 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.04/ %R 10.22436/jnsa.003.02.04 %G en %F JNSA_2010_3_2_a3
ZOLFAGHARI, S. APPROXIMATION OF MIXED TYPE FUNCTIONAL EQUATIONS IN pBANACH SPACES. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 110-122. doi : 10.22436/jnsa.003.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.04/
[1] Functional Equations in Several Variables, Cambridge University Press, , 1989
[2] Characterizations of Inner Product Spaces, Birkhuser, Basel, 1986
[3] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. , Volume 2 (1950), pp. 64-66
[4] Geometric Nonlinear Functional Analysis, vol. 1, Colloq. Publ. vol. 48, Amer. Math. Soc., Providence, RI, 2000
[5] Remarks on the stability of functional equations, Aequationes Math. , Volume 27 (1984), pp. 76-86
[6] Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore, London, 2002
[7] On the stability of the quadratic mapping in normed spaces , Abh. Math. Sem. Univ. Hamburg. , Volume 62 (1992), pp. 59-64
[8] Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis.- TMA. , Volume 71 (2009), pp. 5629-5643
[9] On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abstract and Applied Analysis, Article ID 923476 (2009), pp. 1-11
[10] A fixed point approach to the Cauchy-Rassias stability of general Jensen type quadratic-quadratic mappings (To appear)
[11] The space of (\(\psi,\gamma\))-additive mappings on semigroups, Trans. Amer. Math. Soc. , Volume 354 (11) (2002), pp. 4455-4472
[12] On stability of additive mappings, Int. J. Math. Math. Sci. , Volume 14 (1991), pp. 431-434
[13] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436
[14] The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen. , Volume 48 (1996), pp. 217-235
[15] On the stability of the linear functional equation, Proc. Natl. Acad. Sci. , Volume 27 (1941), pp. 222-224
[16] Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998
[17] Approximate homomorphisms , Aequationes Math. , Volume 44 (1992), pp. 125-153
[18] Stability of \(\psi\)-additive mappings: Applications to nonlinear analysis, Internat. J. Math. Math. Sci. , Volume 19 (1996), pp. 219-228
[19] On inner products in linear metric spaces, Ann. Math. , Volume 36 (1935), pp. 719-723
[20] Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001
[21] A fixed point approach to stability of cubic functional equation, Bol. Soc. Mat. Mexicana , Volume 12 (2006), pp. 51-57
[22] Quadratic functional equation and inner product spaces, Results Math. , Volume 27 (1995), pp. 368-372
[23] Stability of a mixed functional equation in several variables on Banach modules, Nonlinear Analysis.-TMA (in press.)
[24] Stability of a functional equation deriving from quadratic and additive function in quasi-Banach spaces, J. Math. Anal. Appl. , Volume 337 (2008), pp. 399-415
[25] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[26] New characterization of inner product spaces, Bull. Sci. Math. , Volume 108 (1984), pp. 95-99
[27] Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003
[28] On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. , Volume 173 (1993), pp. 325-338
[29] Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. , Volume 228 (1998), pp. 234-253
[30] Metric Linear Spaces, PWN-Polish Sci. Publ.-Reidel, Warszawa-Dordrecht, 1984
[31] Problems in Modern Mathematics, Chapter VI, science Editions., Wiley, New York, 1964
Cité par Sources :