APPROXIMATION OF MIXED TYPE FUNCTIONAL EQUATIONS IN pBANACH SPACES
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 110-122.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate the generalized Hyers-Ulam stability of the functional equation
$\sum^n _{i=1} f(x_i - \frac{1}{ n} \sum^n _{j=1} x_j) = \sum^n _{i=1} f(x_i) - nf( \frac{1}{ n} \sum^n_{ i=1} x_i)\quad (n \geq 2)$
in p-Banach spaces.
DOI : 10.22436/jnsa.003.02.04
Classification : 39B82, 44B52
Keywords: Generalized Hyers-Ulam stability, Additive and Quadratic function, p-Banach spaces.

ZOLFAGHARI, S. 1

1 Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
@article{JNSA_2010_3_2_a3,
     author = {ZOLFAGHARI, S.},
     title = {APPROXIMATION {OF} {MIXED} {TYPE} {FUNCTIONAL} {EQUATIONS} {IN} {pBANACH} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {110-122},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2010},
     doi = {10.22436/jnsa.003.02.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.04/}
}
TY  - JOUR
AU  - ZOLFAGHARI, S.
TI  - APPROXIMATION OF MIXED TYPE FUNCTIONAL EQUATIONS IN pBANACH SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 110
EP  - 122
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.04/
DO  - 10.22436/jnsa.003.02.04
LA  - en
ID  - JNSA_2010_3_2_a3
ER  - 
%0 Journal Article
%A ZOLFAGHARI, S.
%T APPROXIMATION OF MIXED TYPE FUNCTIONAL EQUATIONS IN pBANACH SPACES
%J Journal of nonlinear sciences and its applications
%D 2010
%P 110-122
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.04/
%R 10.22436/jnsa.003.02.04
%G en
%F JNSA_2010_3_2_a3
ZOLFAGHARI, S. APPROXIMATION OF MIXED TYPE FUNCTIONAL EQUATIONS IN pBANACH SPACES. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 110-122. doi : 10.22436/jnsa.003.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.04/

[1] Aczel, J.; Dhombres, J. Functional Equations in Several Variables, Cambridge University Press, , 1989

[2] Amir, D. Characterizations of Inner Product Spaces, Birkhuser, Basel, 1986

[3] T. Aoki On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. , Volume 2 (1950), pp. 64-66

[4] Benyamini, Y.; J. Lindenstrauss Geometric Nonlinear Functional Analysis, vol. 1, Colloq. Publ. vol. 48, Amer. Math. Soc., Providence, RI, 2000

[5] Cholewa, P. W. Remarks on the stability of functional equations, Aequationes Math. , Volume 27 (1984), pp. 76-86

[6] Czerwik, P. Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore, London, 2002

[7] S. Czerwik On the stability of the quadratic mapping in normed spaces , Abh. Math. Sem. Univ. Hamburg. , Volume 62 (1992), pp. 59-64

[8] Gordji, M. Eshaghi; Khodaei, H. Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis.- TMA. , Volume 71 (2009), pp. 5629-5643

[9] Gordji, M. Eshaghi; Khodaei, H. On the Generalized Hyers-Ulam-Rassias Stability of Quadratic Functional Equations, Abstract and Applied Analysis, Article ID 923476 (2009), pp. 1-11

[10] Gordji, M. Eshaghi; Khodaei, H.; Park, C. A fixed point approach to the Cauchy-Rassias stability of general Jensen type quadratic-quadratic mappings (To appear)

[11] Faizev, V. A.; Rassias, Th. M.; Sahoo, P. K. The space of (\(\psi,\gamma\))-additive mappings on semigroups, Trans. Amer. Math. Soc. , Volume 354 (11) (2002), pp. 4455-4472

[12] Gajda, Z. On stability of additive mappings, Int. J. Math. Math. Sci. , Volume 14 (1991), pp. 431-434

[13] Gcheckavruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. , Volume 184 (1994), pp. 431-436

[14] Grabiec, A. The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen. , Volume 48 (1996), pp. 217-235

[15] Hyers, D. H. On the stability of the linear functional equation, Proc. Natl. Acad. Sci. , Volume 27 (1941), pp. 222-224

[16] Hyers, D. H.; Isac, G.; Th. M. Rassias Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998

[17] Hyers, D. H.; Rassias, Th. M. Approximate homomorphisms , Aequationes Math. , Volume 44 (1992), pp. 125-153

[18] Isac, G.; Rassias, Th. M. Stability of \(\psi\)-additive mappings: Applications to nonlinear analysis, Internat. J. Math. Math. Sci. , Volume 19 (1996), pp. 219-228

[19] Jordan, P.; Neumann, J. On inner products in linear metric spaces, Ann. Math. , Volume 36 (1935), pp. 719-723

[20] Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001

[21] Jung, S.-M.; Kim, T.-S. A fixed point approach to stability of cubic functional equation, Bol. Soc. Mat. Mexicana , Volume 12 (2006), pp. 51-57

[22] Kannappan, Pl. Quadratic functional equation and inner product spaces, Results Math. , Volume 27 (1995), pp. 368-372

[23] Najati, A.; Rassias, Th. M. Stability of a mixed functional equation in several variables on Banach modules, Nonlinear Analysis.-TMA (in press.)

[24] Najati, A.; Moghimi, M. B. Stability of a functional equation deriving from quadratic and additive function in quasi-Banach spaces, J. Math. Anal. Appl. , Volume 337 (2008), pp. 399-415

[25] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[26] Rassias, Th. M. New characterization of inner product spaces, Bull. Sci. Math. , Volume 108 (1984), pp. 95-99

[27] Rassias, Th. M. Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003

[28] Rassias, Th. M.; ·Semrl, P. On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. , Volume 173 (1993), pp. 325-338

[29] Rassias, Th. M.; Shibata, K. Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. , Volume 228 (1998), pp. 234-253

[30] Rolewicz, S. Metric Linear Spaces, PWN-Polish Sci. Publ.-Reidel, Warszawa-Dordrecht, 1984

[31] Ulam, S. M. Problems in Modern Mathematics, Chapter VI, science Editions., Wiley, New York, 1964

Cité par Sources :