Voir la notice de l'article provenant de la source International Scientific Research Publications
JAIN, SHOBHA 1 ; JAIN, SHISHIR 2 ; JAIN, LAL BAHADUR 3
@article{JNSA_2010_3_2_a2, author = {JAIN, SHOBHA and JAIN, SHISHIR and JAIN, LAL BAHADUR}, title = {COMPATIBILITY {OF} {TYPE} {P} {IN} {MODIFIED} {INTUITIONISTIC} {FUZZY} {METRIC} {SPACE}}, journal = {Journal of nonlinear sciences and its applications}, pages = {96-109}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2010}, doi = {10.22436/jnsa.003.02.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.03/} }
TY - JOUR AU - JAIN, SHOBHA AU - JAIN, SHISHIR AU - JAIN, LAL BAHADUR TI - COMPATIBILITY OF TYPE P IN MODIFIED INTUITIONISTIC FUZZY METRIC SPACE JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 96 EP - 109 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.03/ DO - 10.22436/jnsa.003.02.03 LA - en ID - JNSA_2010_3_2_a2 ER -
%0 Journal Article %A JAIN, SHOBHA %A JAIN, SHISHIR %A JAIN, LAL BAHADUR %T COMPATIBILITY OF TYPE P IN MODIFIED INTUITIONISTIC FUZZY METRIC SPACE %J Journal of nonlinear sciences and its applications %D 2010 %P 96-109 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.03/ %R 10.22436/jnsa.003.02.03 %G en %F JNSA_2010_3_2_a2
JAIN, SHOBHA; JAIN, SHISHIR; JAIN, LAL BAHADUR. COMPATIBILITY OF TYPE P IN MODIFIED INTUITIONISTIC FUZZY METRIC SPACE. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 96-109. doi : 10.22436/jnsa.003.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.03/
[1] Common fixed point in L-fuzzy metric spaces, Applied Mathematics and Computation , Volume 182 (2006), pp. 820-828
[2] A common fixed point theorem for weak compatible mappings in intuitionistic fuzzy metric spaces, International Journal of Pure and Applied Math, Volume 32 (2006), pp. 537-548
[3] Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons and Fractals , Volume 29 (2006), pp. 1073-1078
[4] Intuitionistic fuzzy sets, Fuzzy Sets and System , Volume 20 (1986), pp. 87-96
[5] Intuitionistic fuzzy sets, Fuzzy Sets and System , Volume 61 (1994), pp. 137-142
[6] On the representation of intuitionistic fuzzy t-norm and t-conorm, IEEE Trans. Fuzzy Syst, Volume 12 (2004), pp. 45-61
[7] On the relationship between some extensions of fuzzy set theory, Fuzzy sets and system , Volume 133 (2003), pp. 227-235
[8] On some results in fuzzy metric spaces, Fuzzy Sets and System , Volume 64 (1994), pp. 395-399
[9] Fixed points in fuzzy metric spaces, Fuzzy Sets and System , Volume 27 (1988), pp. 385-389
[10] r-r'contraction in Modified Intuitionistic fuzzy metric space , Kochi Journal of Mathematics , Volume 4 (2009), pp. 87-100
[11] Commuting maps and fixed points, Amer. Math. monthly , Volume 83 (1976), pp. 261-263
[12] Compatible mappings and common fixed point, Internat. Journal of Math. Math. Sci., Volume 9 (1986), pp. 771-779
[13] Fuzzy metric and statistical metric spaces, Kybernetica , Volume 11 (1975), pp. 326-334
[14] A common fixed point theorem for a sequence of self maps in intuitionistic fuzzy metric spaces, Commun. Korean Math. Soc. , Volume 21 (2006), pp. 679-687
[15] Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals , Volume 22 (2004), pp. 1039-1046
[16] On the intuitionistic fuzzy topolodical spaces, Chaos Solitons and Fractals , Volume 27 (2006), p. 331-44
[17] Modified Intuitionistic Fuzzy metric spaces and fixed point theorems, Choas Fractal and Solitions ( in press)
[18] On a weak commutative condition in fixed point consideration Publ. , Inst. Math (Beograd), Volume 32(46) (1982), pp. 146-153
[19] Fixed point theorem for six self-maps in fuzzy metric space, The Journal of Fuzzy Mathematics , Volume 14 (2006), pp. 231-243
[20] Common fixed point theorems in intuitionistic fuzzy metric spaces, J. Apply. Math. Computing, Volume 22 (2006), pp. 411-424
[21] L-fuzzy nonlinear approximation theory with application, J. Nonlinear Sci. Appl. , Volume 2 (2009), pp. 146-151
[22] Fuzzy sets, Inform and control , Volume 89 (1965), pp. 338-353
Cité par Sources :