SOME FIXED POINT THEOREMS WITH APPLICATIONS TO BEST SIMULTANEOUS APPROXIMATIONS
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 87-95.

Voir la notice de l'article provenant de la source International Scientific Research Publications

For a subset $K$ of a metric space $(X, d)$ and $x \in X$, the set $P_K(x) = \{y \in K : d(x, y) = d(x;K) \equiv \inf\{d(x, k) : k \in K\}\}$ is called the set of best $K$ -approximant to $x$. An element $g_\circ \in K$ is said to be a best simultaneous approximation of the pair $y_1, y_2 \in X$ if
$\max\{d(y_1, g_\circ), d(y_2, g_\circ)\} = \inf_{g\in K} \max\{d(y_1, g), d(y_2, g)\}.$
Some results on $T$-invariant points for a set of best simultaneous approximation to a pair of points $y_1, y_2$ in a convex metric space $(X, d)$ have been proved by imposing conditions on $K$ and the self mapping $T$ on $K$ . For self mappings $T$ and $S$ on $K$ , results are also proved on both $T$- and $S$- invariant points for a set of best simultaneous approximation. The results proved in the paper generalize and extend some of the results of $P$. Vijayaraju [Indian J. Pure Appl. Math. 24(1993) 21-26]. Some results on best $K$ -approximant are also deduced.
DOI : 10.22436/jnsa.003.02.02
Classification : 47H10, 54H25
Keywords: Best approximation, fixed point, nonexpansive, R-weakly commuting, R-subweakly commuting, asymptotically nonexpansive and uniformly asymptotically regular maps.

NARANG , T. D.  1 ; CHANDOK, SUMIT 2

1 Department of Mathematics, Guru Nanak Dev University, Amritsar-143001, India
2 School of Mathematics and Computer Applications, Thapar University, Patiala- 147004, India
@article{JNSA_2010_3_2_a1,
     author = {NARANG , T. D.  and CHANDOK, SUMIT},
     title = {SOME {FIXED} {POINT} {THEOREMS} {WITH} {APPLICATIONS} {TO} {BEST} {SIMULTANEOUS} {APPROXIMATIONS}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {87-95},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2010},
     doi = {10.22436/jnsa.003.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.02/}
}
TY  - JOUR
AU  - NARANG , T. D. 
AU  - CHANDOK, SUMIT
TI  - SOME FIXED POINT THEOREMS WITH APPLICATIONS TO BEST SIMULTANEOUS APPROXIMATIONS
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 87
EP  - 95
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.02/
DO  - 10.22436/jnsa.003.02.02
LA  - en
ID  - JNSA_2010_3_2_a1
ER  - 
%0 Journal Article
%A NARANG , T. D. 
%A CHANDOK, SUMIT
%T SOME FIXED POINT THEOREMS WITH APPLICATIONS TO BEST SIMULTANEOUS APPROXIMATIONS
%J Journal of nonlinear sciences and its applications
%D 2010
%P 87-95
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.02/
%R 10.22436/jnsa.003.02.02
%G en
%F JNSA_2010_3_2_a1
NARANG , T. D. ; CHANDOK, SUMIT. SOME FIXED POINT THEOREMS WITH APPLICATIONS TO BEST SIMULTANEOUS APPROXIMATIONS. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 87-95. doi : 10.22436/jnsa.003.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.02/

[1] Goebel, K.; Kirk, W. A. A fixed point theorem for asymptotically nonexpansive mappings, Proc.Amer.Math.Soc. , Volume 35 (1972), pp. 171-174

[2] Guay, M. D.; Singh, K. L.; Whitfield, J. H. M. Fixed point theorems for nonexpansive mappings in convex metric spaces, Proc. Conference on nonlinear analysis (Ed. S.P. Singh and J.H. Bury) Marcel Dekker , Volume 80 (1982), pp. 179-189

[3] Itoh, Sh. Some fixed point theorems in metric spaces, Fundamenta Mathematicae , Volume 52 (1979), pp. 109-117

[4] Jungck, G. An iff fixed point criterion, Math. Mag. , Volume 49 (1976), pp. 32-34

[5] Pant, R. P. Common fixed points of noncommuting mappings, J. Math. Anal. Appl., Volume 188 (1994), pp. 436-440

[6] Sahab, S. A.; Khan, M. S.; Sessa, S. A result in best approximation theory, J. Approx. Theory , Volume 55 (1988), pp. 349-351

[7] Shahzad, N. Invariant approximations and R-subweakly commuting maps, J. Math. Anal. Appl. , Volume 257 (2001), pp. 39-45

[8] Shahzad, N. Noncommuting maps and best approximations, Radovi Mat. , Volume 10 (2001), pp. 77-83

[9] Takahashi, W. A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep., Volume 22 (1970), pp. 142-149

[10] Vijayaraju, P. Applications of fixed point theorems to best simultaneous approximations, Indian J. Pure Appl. Math. , Volume 24 (1993), pp. 21-26

Cité par Sources :