Voir la notice de l'article provenant de la source International Scientific Research Publications
VAKILABAD, A. BAGHERI  1 ; VAEZPOUR, S. MANSOUR  2
@article{JNSA_2010_3_2_a0, author = {VAKILABAD, A. BAGHERI and VAEZPOUR, S. MANSOUR }, title = {GENERALIZED {CONTRACTIONS} {AND} {COMMON} {FIXED} {POINT} {THEOREMS} {CONCERNING} {DISTANCE}}, journal = {Journal of nonlinear sciences and its applications}, pages = {78-86}, publisher = {mathdoc}, volume = {3}, number = {2}, year = {2010}, doi = {10.22436/jnsa.003.02.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.01/} }
TY - JOUR AU - VAKILABAD, A. BAGHERI AU - VAEZPOUR, S. MANSOUR TI - GENERALIZED CONTRACTIONS AND COMMON FIXED POINT THEOREMS CONCERNING DISTANCE JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 78 EP - 86 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.01/ DO - 10.22436/jnsa.003.02.01 LA - en ID - JNSA_2010_3_2_a0 ER -
%0 Journal Article %A VAKILABAD, A. BAGHERI %A VAEZPOUR, S. MANSOUR %T GENERALIZED CONTRACTIONS AND COMMON FIXED POINT THEOREMS CONCERNING DISTANCE %J Journal of nonlinear sciences and its applications %D 2010 %P 78-86 %V 3 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.01/ %R 10.22436/jnsa.003.02.01 %G en %F JNSA_2010_3_2_a0
VAKILABAD, A. BAGHERI ; VAEZPOUR, S. MANSOUR . GENERALIZED CONTRACTIONS AND COMMON FIXED POINT THEOREMS CONCERNING DISTANCE. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 78-86. doi : 10.22436/jnsa.003.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.01/
[1] On \(\Phi\)-Fixed point for maps on uniform spaces, J. of Nonlinear Science and Applications, Volume 1(4) (2008), pp. 241-243
[2] Kannan fixed point theorem on generalized metric spaces, J. of Nonlinear Science and Applications, Volume 1(1) (2008), pp. 45-48
[3] Nonconvex Minimization theorems and fixed point theorems in complete metric spaces, Math. Japon, Volume 44 (1996), pp. 381-391
[4] On Kannan fixed point principle in generalized metric spaces, J. of Nonlinear Science and Applications, Volume 2(2) (2009), pp. 92-96
[5] Contractions over generalized metric spaces , J. of Nonlinear Science and Applications, Volume 2(3) (2009), pp. 180-182
[6] Contractive mappings, Kannan mappings and metric completness, Proc. Amer. Math. Soc, Volume 126 (1998), pp. 3117-3124
[7] Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., Volume 253(2) (2001), pp. 440-458
[8] On Downing-Kirk's theorem, J. Math. Anal. Appl., Volume 286 (2003), pp. 453-458
[9] Several fixed point theorems concerning \(\tau\)-distance, Fixed Point Theory and Applications, Volume 3 (2004), pp. 195-209
[10] Generalized Caristi's fixed point theorems by Bae and othrs, J. Math. Anal. Appl, Volume 302 (2005), pp. 502-508
[11] Thestrong Ekeland vriational principle, J. Math. Anal. Appl., Volume 320 (2006), pp. 787-794
[12] Existence theorems generalazing fixed point theorems for multivalued mappings, Fixed Point Theory and Applications, Volume 252 (1991), pp. 397-406
[13] Viscosity soluation of Hamilton-Jacbi equations with unbounded nonlinear terms, J. Math. Anal. Appl, Volume 163 (1992), pp. 345-392
[14] Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd)(N.S.), Volume 12(26) (1971), pp. 19-26
[15] On a family of contractive maps and fixed-points, Publ. Inst. Math. (Beograd)(N.S.), Volume 17(31) (1974), pp. 45-51
[16] A generalization of Banbch's contractions principle, Proc. Amer. Math. Soc, Volume 45 (1974), pp. 267-273
Cité par Sources :