GENERALIZED CONTRACTIONS AND COMMON FIXED POINT THEOREMS CONCERNING DISTANCE
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 78-86.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we consider the generalized distance, present a generalization of Ćirić's generalized contraction fixed point theorems on a complete metric space and investigate a common fixed point theorem about a sequence of mappings concerning generalized distance.
DOI : 10.22436/jnsa.003.02.01
Classification : 24H25, 54E50, 54H25
Keywords: Common fixed point, \(\tau\)-distance, generalized contraction.

VAKILABAD, A. BAGHERI  1 ; VAEZPOUR, S. MANSOUR  2

1 Dept. of Math., Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Dept. of Math., Amirkabir University of Technology, Hafez Ave., P. O. Box 15914, Tehran, Iran
@article{JNSA_2010_3_2_a0,
     author = {VAKILABAD, A. BAGHERI  and VAEZPOUR, S. MANSOUR },
     title = {GENERALIZED {CONTRACTIONS} {AND} {COMMON} {FIXED} {POINT} {THEOREMS} {CONCERNING} {DISTANCE}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {78-86},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2010},
     doi = {10.22436/jnsa.003.02.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.01/}
}
TY  - JOUR
AU  - VAKILABAD, A. BAGHERI 
AU  - VAEZPOUR, S. MANSOUR 
TI  - GENERALIZED CONTRACTIONS AND COMMON FIXED POINT THEOREMS CONCERNING DISTANCE
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 78
EP  - 86
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.01/
DO  - 10.22436/jnsa.003.02.01
LA  - en
ID  - JNSA_2010_3_2_a0
ER  - 
%0 Journal Article
%A VAKILABAD, A. BAGHERI 
%A VAEZPOUR, S. MANSOUR 
%T GENERALIZED CONTRACTIONS AND COMMON FIXED POINT THEOREMS CONCERNING DISTANCE
%J Journal of nonlinear sciences and its applications
%D 2010
%P 78-86
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.01/
%R 10.22436/jnsa.003.02.01
%G en
%F JNSA_2010_3_2_a0
VAKILABAD, A. BAGHERI ; VAEZPOUR, S. MANSOUR . GENERALIZED CONTRACTIONS AND COMMON FIXED POINT THEOREMS CONCERNING DISTANCE. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 2, p. 78-86. doi : 10.22436/jnsa.003.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.02.01/

[1] Alimohammadi, M.; Ramzanzadeh, M. On \(\Phi\)-Fixed point for maps on uniform spaces, J. of Nonlinear Science and Applications, Volume 1(4) (2008), pp. 241-243

[2] Azam, A.; M. Arshad Kannan fixed point theorem on generalized metric spaces, J. of Nonlinear Science and Applications, Volume 1(1) (2008), pp. 45-48

[3] Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex Minimization theorems and fixed point theorems in complete metric spaces, Math. Japon, Volume 44 (1996), pp. 381-391

[4] Mihet, D. On Kannan fixed point principle in generalized metric spaces, J. of Nonlinear Science and Applications, Volume 2(2) (2009), pp. 92-96

[5] Sarma, I. R.; Rao, J. M.; Rao, S. S. Contractions over generalized metric spaces , J. of Nonlinear Science and Applications, Volume 2(3) (2009), pp. 180-182

[6] Shioji, N.; Suzuki, T.; Takahashi, W. Contractive mappings, Kannan mappings and metric completness, Proc. Amer. Math. Soc, Volume 126 (1998), pp. 3117-3124

[7] T. Suzuki Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl., Volume 253(2) (2001), pp. 440-458

[8] Suzuki, T. On Downing-Kirk's theorem, J. Math. Anal. Appl., Volume 286 (2003), pp. 453-458

[9] Suzuki, T. Several fixed point theorems concerning \(\tau\)-distance, Fixed Point Theory and Applications, Volume 3 (2004), pp. 195-209

[10] Suzuki, T. Generalized Caristi's fixed point theorems by Bae and othrs, J. Math. Anal. Appl, Volume 302 (2005), pp. 502-508

[11] Suzuki, T. Thestrong Ekeland vriational principle, J. Math. Anal. Appl., Volume 320 (2006), pp. 787-794

[12] Takahashi, W. Existence theorems generalazing fixed point theorems for multivalued mappings, Fixed Point Theory and Applications, Volume 252 (1991), pp. 397-406

[13] Tataru, D. Viscosity soluation of Hamilton-Jacbi equations with unbounded nonlinear terms, J. Math. Anal. Appl, Volume 163 (1992), pp. 345-392

[14] Ćirić, L. B. Generalized contractions and fixed-point theorems, Publ. Inst. Math. (Beograd)(N.S.), Volume 12(26) (1971), pp. 19-26

[15] Ćirić, L. B. On a family of contractive maps and fixed-points, Publ. Inst. Math. (Beograd)(N.S.), Volume 17(31) (1974), pp. 45-51

[16] Ćirić, L. B. A generalization of Banbch's contractions principle, Proc. Amer. Math. Soc, Volume 45 (1974), pp. 267-273

Cité par Sources :