GENERALIZED FUZZY RANDOM SET-VALUED MIXED VARIATIONAL INCLUSIONS INVOLVING RANDOM NONLINEAR ($A_\omega,\eta_\omega$)-ACCRETIVE MAPPINGS IN BANACH SPACES
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 1, p. 63-77.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The main purpose of this paper is to introduce and study a new class of random generalized fuzzy set-valued mixed variational inclusions involving random nonlinear ($A_\omega,\eta_\omega$)-accretive mappings in Banach Spaces. By using the random resolvent operator associated with random nonlinear ($A_\omega,\eta_\omega$)-accretive mappings, an existence theorem of solutions for this kind of random generalized fuzzy set-valued mixed variational inclusions is established and a new iterative algorithm with an random error is suggested and discussed. The results presented in this paper generalize, improve, and unify some recent results in this field.
DOI : 10.22436/jnsa.003.01.08
Classification : 49J40, 47H06
Keywords: Generalized fuzzy random set-valued mixed variational inclusions, random nonlinear (\(A_\omega, \eta_\omega\))-accretive mappings, random resolvent operator, random fuzzy set-valued mapping, convergence, iterative algorithm with an random error.

LI, HONG GANG 1

1 Institute of Applied Mathematics Research, Chongqing University of Posts and TeleCommunications, Chongqing 400065, China
@article{JNSA_2010_3_1_a7,
     author = {LI, HONG GANG},
     title = {GENERALIZED {FUZZY} {RANDOM} {SET-VALUED} {MIXED} {VARIATIONAL} {INCLUSIONS} {INVOLVING} {RANDOM} {NONLINEAR} {(\(A_\omega,\eta_\omega\))-ACCRETIVE} {MAPPINGS} {IN} {BANACH} {SPACES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {63-77},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2010},
     doi = {10.22436/jnsa.003.01.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.08/}
}
TY  - JOUR
AU  - LI, HONG GANG
TI  - GENERALIZED FUZZY RANDOM SET-VALUED MIXED VARIATIONAL INCLUSIONS INVOLVING RANDOM NONLINEAR (\(A_\omega,\eta_\omega\))-ACCRETIVE MAPPINGS IN BANACH SPACES
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 63
EP  - 77
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.08/
DO  - 10.22436/jnsa.003.01.08
LA  - en
ID  - JNSA_2010_3_1_a7
ER  - 
%0 Journal Article
%A LI, HONG GANG
%T GENERALIZED FUZZY RANDOM SET-VALUED MIXED VARIATIONAL INCLUSIONS INVOLVING RANDOM NONLINEAR (\(A_\omega,\eta_\omega\))-ACCRETIVE MAPPINGS IN BANACH SPACES
%J Journal of nonlinear sciences and its applications
%D 2010
%P 63-77
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.08/
%R 10.22436/jnsa.003.01.08
%G en
%F JNSA_2010_3_1_a7
LI, HONG GANG. GENERALIZED FUZZY RANDOM SET-VALUED MIXED VARIATIONAL INCLUSIONS INVOLVING RANDOM NONLINEAR (\(A_\omega,\eta_\omega\))-ACCRETIVE MAPPINGS IN BANACH SPACES. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 1, p. 63-77. doi : 10.22436/jnsa.003.01.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.08/

[1] Ahmad, R.; Bazàn, F. F. An iterative algorithm for random generalized nonlinear mixed variational variational inclusions for random fuzzy mappings, Appl. Math. Comput. , Volume 167 (2005), pp. 1400-1411

[2] Ahmad, R.; Ansari, Q. H. An iterative algorithm for generalized nonlinear variational inclusions , Appl. Math. lett., Volume 13(5) (2005), pp. 23-26

[3] Agarwal, R. P.; Cho, Y. J.; Huang, N. J. Generalized nonlinear variational inclusions involving maximal \(\eta\)-monotone mappings, in: Nonlinear Analysis and Applications: To V. Lakshmikantham on his 80th birthday, Kluwer Acad. Publ., Dordrecht, Volume 1, 2 (2003), pp. 59-73

[4] Agarwal, R. P.; Khan, M. F.; D.O`Regan; Salahuddin On generalized multivalued nonlinear variational- like inclusions with fuzzy mappings, Adv. Nonlinear Var.Inequal. , Volume 8 (2005), pp. 41-55

[5] S. S. Chang Variational Inequality and Complementarity Problem Theory with Applications, Shanghai Scientific and Tech. Literatuer Publishing House, Shanghai, 1991

[6] Alimohammady, M.; M. Roohi Implicit variational-like inclusions involving general (\(H,\eta\))-monotone operators, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 145-154

[7] Chang, S. S.; Huang, N. J. Generalized random multivalued quasi-complementarity problem, Indian J. Math , Volume 33 (1993), pp. 305-320

[8] Cho, Y. J.; Huang, N. J.; S. M. Kang Random generalized set-valued strongly nonlinear implicit quasi- variational inequalities, J. Inequal. Appl. , Volume 5 (2000), pp. 515-531

[9] Cho, Y. J.; Lan, H. Y. Generalized nonlinear random (\(A,\eta\))-accretive equations with random relaxed cocoercive mappings in Banach Spaces, Comput. Math. Appl., accepted 19 September , 2007

[10] Chang, S. S. Fixed Point Theory with Applications, Chongqing Publishing House, Chongqing, 1984

[11] Ding, X. P. Generalized quasi-variational inclusions with nonconvex functionals, Appl. Math. Comput., Volume 122 (2001), pp. 267-282

[12] Ding, X. P.; Luo, C. L. Perturbed proximal point algorithms for generalized quasi-variational-like inclusions, J. Comput. Appl. Math., Volume 210 (2000), pp. 153-165

[13] Fang, Y. P.; Huang, N. J. H-Monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. , Volume 145 (2003), pp. 795-803

[14] Fang, Y. P.; Huang, N. J.; Thompson, H. B. A new system of variational inclusions with (\(H,\eta\))- monotone operators in Hilbert spaces, Computers. Math. Applic., Volume 49 (2005), pp. 365-374

[15] Ganguly, A.; Wadhwa, K. On random variational inequalities, J. Math. Anal. Appl. , Volume 206 (1997), pp. 315-321

[16] Huang, N. J. Random generalized nonlinear variational inclusions for random fuzzy mappings, Fuzzy Sets and Systems. , Volume 105 (1999), pp. 437-444

[17] Huang, N. J.; Cho, Y. J. Random completely generalized set-valued implicit quasi-variational inequalities, Positivity , Volume 3 (1999), pp. 201-213

[18] Huang, N. J.; Long, X.; Y. J. Cho Random completely generalized nonlinear variational inclusions with non-compact valued random maappings, Bull. Korean Math. Soc. , Volume 34 (1997), pp. 603-615

[19] Huang, N. J.; Fang, Y. P. A new class of general variational inclusions involving maximal \(\eta\)-monotone mappings, Publ. Math. Debrecen , Volume 62(1-2) (2003), pp. 83-98

[20] Hassouni, A.; Moudafi, A. A perturbed algorithems for variational inequalities, J. Math. Anal. Appl. , Volume 185 (1994), pp. 706-712

[21] Huang, N. J. Nonlinear implicit quasi-variational inclusions involving generalized m-accretive mappings, Arch.Inequal. Appl. , Volume 2 (2004), pp. 413-425

[22] Paul R. Halemous Measure Theory, Springer-Verlag, New Youk, 1974

[23] Jin, M. M.; Liu, Q. K. Nonlinear quasi-Variational Inclusions Involving generalized m-accretive Mappings, Nonlinear Funct. Anal. Appl., Volume 9(3) (2004), pp. 485-494

[24] Khan, M. F.; Salahuddin; Verma, R. U. Generalized random variational-like inequalities eith randomly pseudo-monotone multivalued mappings, PanAmer. Math. J. , Volume 16 (2006), pp. 33-46

[25] Lan, H. Y. Projecction iterative approximations for a new class of general random implicit quasi- variational inequalities, J. Inequal. Appl. Art. ID 81261. , Volume 2006 (2006), pp. 1-17

[26] H. Y. Lan On multi-valued nonlinear variational inclusions problems with (\(A,\eta\))-accretive mappings in Banach spaces, J. Inequal. Appl. Art. ID 59836. , Volume 2006 (2006), pp. 1-12

[27] Lan, H. Y.; Cho, Y. J.; Verma, R. U. On nonlinear relaxed cocoercive inclusions involving (\(A,\eta\))- accretive mappings in Banach spaces, Math. Appl. Comput. , Volume 51 (2006), pp. 1529-1538

[28] Lan, H. Y.; Huang, N. J.; Cho, Y. J. A class of method for nonlinear variational inequalities with multi-valued mappings, Arch. Inequal. Appl. , Volume 2 (2004), pp. 73-84

[29] Lan, H. Y.; Kim, J. K.; Huang, N. J. On the generalized nonlinear quasi-variational inclusions involving non-monotone set-valued mappings, Nonlinear Funct. Anal. Appl. , Volume 9 (2004), pp. 451-465

[30] Lan, H. Y.; Liu, Q. K.; J. Li Iterative approximation for a system of nonlinear variational inclusions involving generalized m-accretive mappings, Nonlinear Anal. Forum , Volume 9 (2004), pp. 33-42

[31] H. G. Li Iterative Algorithm for A New Class of Generalized Nonlinear Fuzzy Set-Valude Variational Inclusions Involving (\(H,\eta\))-monotone Mappings[J], Adva. Nonl. Vari. Inequal. , Volume 10 (2007), pp. 89-100

[32] Nadler, S. B. Multivalued contraction mappings, Pacific J. Math. , Volume 30 (1969), pp. 475-488

[33] Noor, M. A.; Elsanousi, S. A. Iterative methods for random variational inequalities, PanAmer. Math. J. , Volume 3(1) (1993), pp. 39-50

[34] Shim, S. H.; Kang, S. M.; Huang, N. J.; Yao, J. C. Perturbed iterative algorithms with errors for completely generalized strongly nonlinear implicit variational-like inclusions, J. Inequal. Appl. , Volume 5 (2000), pp. 381-395

[35] Tian, Y. X. Generalized nonlinear implicit quasivariational inclusions with fuzzy mappings, Comput. Math. Appl. , Volume 42 (2001), pp. 101-108

[36] Verma, R. U. Sensitivity analysis for relaxed cocoercive nonlinear quasivariational inclusions, J. Appl. Math. Stoch. Anal., Art. ID 52041. , Volume 2006 (2006), pp. 1-9

[37] Verma, R. U. A-monotonicity and applications to nonlinear variational inclusions, J. Appl Math. and Stochastic Anal. , Volume 17 (2004), pp. 193-195

[38] Xu, H. K. Inequalities in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138

[39] Yuan, G. X. Z. KKM Theory and Applications in Nonlinear Analysis, Marcel Dekker, New York, 1999

[40] Yousefi, A.; Soleimani-Vareki, M. \(L\)-fuzzy nonlinear approximation theory with application , J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 146-151

[41] Zeidler, D. Nonlinear Functional Analysis and its Applications II: Monotone Operators, Springer-Verlag, Berlin, 1985

[42] Zhang, C.; Z. S. Bi Random generalized nonlinear variational inclusions for random fuzzy mappings, J. Sichuan Univer.(Natural Sci. Edition), Volume 6 (2007), pp. 499-502

Cité par Sources :