S-COINCIDENCE AND S-COMMON FIXED POINT THEOREMS FOR TWO PAIRS OF SET-VALUED NONCOMPATIBLE MAPPINGS IN METRIC SPACE
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 1, p. 55-62.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this work, the new concepts, normal product of two set-valued mappings, s-weakly compatible, s-common fixed point and the ($EA_s$) property for two pairs of set- valued mappings are introduced, and the s-common fixed point existence theorems for two pairs of set-valued noncompatible mappings under strict contractive condition are proved, without appeal to continuity of any map involved therein and completeness of underlying space. The results presented in this paper generalize, improve, and unify some recent results in this field.
DOI : 10.22436/jnsa.003.01.07
Classification : 49J40, 47H06
Keywords: Normal product, s-coincidence point for two pairs of set-valued mappings, s- common Fixed Point Theorems, s-noncompatible, s-weakly compatible, (\(EA_s\)) property.

LI, HONG GANG 1

1 Institute of Applied Mathematics Research , Chongqing University of Posts and TeleCommunications, Chongqing 400065, China
@article{JNSA_2010_3_1_a6,
     author = {LI, HONG GANG},
     title = {S-COINCIDENCE {AND} {S-COMMON} {FIXED} {POINT} {THEOREMS} {FOR} {TWO} {PAIRS} {OF} {SET-VALUED} {NONCOMPATIBLE} {MAPPINGS} {IN} {METRIC} {SPACE}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {55-62},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2010},
     doi = {10.22436/jnsa.003.01.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.07/}
}
TY  - JOUR
AU  - LI, HONG GANG
TI  - S-COINCIDENCE AND S-COMMON FIXED POINT THEOREMS FOR TWO PAIRS OF SET-VALUED NONCOMPATIBLE MAPPINGS IN METRIC SPACE
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 55
EP  - 62
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.07/
DO  - 10.22436/jnsa.003.01.07
LA  - en
ID  - JNSA_2010_3_1_a6
ER  - 
%0 Journal Article
%A LI, HONG GANG
%T S-COINCIDENCE AND S-COMMON FIXED POINT THEOREMS FOR TWO PAIRS OF SET-VALUED NONCOMPATIBLE MAPPINGS IN METRIC SPACE
%J Journal of nonlinear sciences and its applications
%D 2010
%P 55-62
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.07/
%R 10.22436/jnsa.003.01.07
%G en
%F JNSA_2010_3_1_a6
LI, HONG GANG. S-COINCIDENCE AND S-COMMON FIXED POINT THEOREMS FOR TWO PAIRS OF SET-VALUED NONCOMPATIBLE MAPPINGS IN METRIC SPACE. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 1, p. 55-62. doi : 10.22436/jnsa.003.01.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.07/

[1] Azam, A.; Arshad, M.; Beg, I. Common fixed point theorems in cone metric spaces, The Journal of Nonlinear Science and its Applications, Volume 2 (2009), pp. 204-213

[2] Azam, A.; Beg, I. Coincidence point ofcompatible multivalued mappings, Demonstratio Mathematica, Volume 29 (1996), pp. 17-22

[3] Aamri, M.; Moutawakil, D. El Some new common fixed point theorems under strict contractive conditions, J. Math. Anal. Appl., Volume 270 (2002), pp. 181-188

[4] Beg, I.; M. Abbas Coincidence and fixed point theorems for two hybrid pairs of noncompatible maps, Nonlinear Analysis Series A (in preen. )

[5] Dube, L. S. A theorem on common fixed points of multivalued mappings, Annal. Soc. Sci. Bruxells, Volume 84 (1975), pp. 463-468

[6] Hadzic, O. Common fixed point theorem for single valued and multivalued mappings , Rev. of Research for Sci. Math. Series., Volume 18 (1988), pp. 145-151

[7] Jungck, G. Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Soc., Volume 103 (1988), pp. 977-983

[8] G. Jungck Common fixed points for noncontinuous nonself maps on a nonmetric space, Far East J. Math. Sci., Volume 4(2) (1996), pp. 199-212

[9] Jungck, G.; Rhoades, B. E. Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math., Volume 29 (1998), pp. 227-238

[10] Jungck, G. Commuting mappings and fixed points, Amer. Math. Monthly, Volume 83 (1976), pp. 261-263

[11] Kaneko, H.; Sessa, S. Fixed point theorems for compatible multivalued and single valued mappings, Int. J. Math. Math. Sci., Volume 12 (1989), pp. 257-267

[12] Kamran, T. Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl., Volume 299 (2004), pp. 235-241

[13] Li, H. G. Perturbed Ishikawa Iterative Algorithm and Stability for Nonlinear Mixed Quasi-Variational Inclusions Involving (\(A,\eta\))-accretive Mappings, Advances in Nonlinear Variational Inequalities, Volume 11(1) (2008), pp. 41-50

[14] Li, H. G. Approximate algorithm of solutions for general nonlinear fuzzy mulitvalued quasi-varaiational inclusions with (\(G,\eta\))-monotone mappings, Nonlinear Functional Analysis and Applications, Volume 13(2) (2008), pp. 277-289

[15] Li, Y.; Gu, F. Common fixed piont theorem of altman integral type mappings, The Journal of Nonlinear Science and its Applications, Volume 2 (2009), pp. 214-218

[16] Liu, Y.; Wu, J.; Li, Z. Common fixed points of single valued and multivalued maps, Int. J. Math. Math. Sci., Volume 19 (2005), pp. 3045-3055

[17] Nadler, S. B.; Jr. Multivalued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488

[18] R. P. Pant Common fixed point ofnoncomuting mappings, J. Math. Anal. Appl., Volume 188 (1994), pp. 436-440

[19] Rhoades, B. E. On multivalued f-nonexpansive maps, Fixed Point Theory Appl., Volume 2 (2001), pp. 89-92

[20] Sessa, S. On a weak commutativity condition ofmappings in fixed point consideration, Publ. Inst. Math. Soc., Volume 32 (1982), pp. 149-153

[21] Shahzad, N. Invariant approximation and R- subweakly commuting maps, J. Math. Anal. Appl., Volume 257 (2001), pp. 39-45

[22] Singh, S. L.; Kumar, Ashish Common fixed point theorems for contractive maps, Mat. Bech., Volume 58 (2006), pp. 85-90

[23] Zhang, S. S. On problem of nearst common fixed point of nonexpansive mapping, Applied Mathematics and Mechanics , Volume 27(7) (2006), pp. 775-781

Cité par Sources :