EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR A $p$-LAPLACIAN BOUNDARY VALUE PROBLEM ON TIME SCALES
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 1, p. 32-38.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the solvability of one-dimensional fourth- order $p$-Laplacian boundary value problems on time scales. By using Krasnosel'skii's fixed point theorem of cone expansion-compression type, some existence and multiplicity results of positive solution have been required according to different growth condition of nonlinear form f at zero and at infinity.
DOI : 10.22436/jnsa.003.01.04
Classification : 34B15, 34B18
Keywords: Time scales, p-Laplacian operator, Positive solution, Cone.

PANG , YUANYUAN  1 ; BAI, ZHANBING 1

1 College of Information Science and Engineering, Shandong University of Science and Technology, Qing Dao, 266510, P. R. China
@article{JNSA_2010_3_1_a3,
     author = {PANG , YUANYUAN  and BAI, ZHANBING},
     title = {EXISTENCE {AND} {MULTIPLICITY} {OF} {POSITIVE} {SOLUTIONS} {FOR} {A} {\(p\)-LAPLACIAN} {BOUNDARY} {VALUE} {PROBLEM} {ON} {TIME} {SCALES}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {32-38},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2010},
     doi = {10.22436/jnsa.003.01.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.04/}
}
TY  - JOUR
AU  - PANG , YUANYUAN 
AU  - BAI, ZHANBING
TI  - EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR A \(p\)-LAPLACIAN BOUNDARY VALUE PROBLEM ON TIME SCALES
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 32
EP  - 38
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.04/
DO  - 10.22436/jnsa.003.01.04
LA  - en
ID  - JNSA_2010_3_1_a3
ER  - 
%0 Journal Article
%A PANG , YUANYUAN 
%A BAI, ZHANBING
%T EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR A \(p\)-LAPLACIAN BOUNDARY VALUE PROBLEM ON TIME SCALES
%J Journal of nonlinear sciences and its applications
%D 2010
%P 32-38
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.04/
%R 10.22436/jnsa.003.01.04
%G en
%F JNSA_2010_3_1_a3
PANG , YUANYUAN ; BAI, ZHANBING. EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR A \(p\)-LAPLACIAN BOUNDARY VALUE PROBLEM ON TIME SCALES. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 1, p. 32-38. doi : 10.22436/jnsa.003.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.04/

[1] Avery, R. I.; Anderson, D. R. Existence of three positive solutions to a second-order boundary value problem on a measure chain, J. Comput. Appl. Math. , Volume 141 (2002), pp. 65-73

[2] Agarwal, R. P.; Bohner, M.; ORegan, D.; Peterson, A. Dynamic equations on time scales: A survey, J. Comput. Appl. Math. , Volume 141 (2002), pp. 1-26

[3] Agarwal, R. P.; Bohner, M.; Rehak, P. Half-linear dynamic equations, Nonlinear Analysis and Applications: To V. Lakshmikantham on his 80th Birthday, Kluwer Academic Publishers, Dordrecht, Volume 1 (2003), pp. 1-57

[4] Anderson, D. R.; Davis, J. M. Multiple solutions and eigenvalues for third-order right focal boundary value problem, J. Math. Anal. Appl. , Volume 267 (2002), pp. 135-157

[5] Afrouzi, G. A.; Moghaddam, M. K.; Mohammadpour, J.; Zameni, M. On the positive and negetive solutions of Laplacian BVP with Neumann boundary conditions, J. Nonlinear Sci. Appl. , Volume 2 (2009), pp. 38-45

[6] Agarwal, R. P.; ORegan, D. Existence theorem for the one-dimensional singular p-Laplacian equation with sign changing nonlinearities, Appl. Math. Comput. , Volume 143 (2003), pp. 15-38

[7] Aulbach, B.; Neidhart, L. Integration on measure chains, in: Proc. of the Sixth Int. Conf. on Difference Equations, CRC, Boca Raton, FL (2004), pp. 239-252

[8] Agarwal, R. P.; ORegan, D. Nonlinear boundary value problems on time scales , Nonlinear Anal. , Volume 44 (2001), pp. 527-535

[9] Bai, Z. B. The upper and lower solution method for some fourth-order boundary value problems, Nonlinear Anal. , Volume 67 (2007), pp. 1704-1709

[10] Bai, Z. B.; Du, Z. Positive solutions for some second-order four-point boundary value problems, J. Math. Anal. Appl. , Volume 330 (2007), pp. 34-50

[11] Bai, Z. B.; Liang, X. Q.; Du, Z. J. Triple positive solutions for some second-order boundary value problem on a measure chain, Comput. Math. Appl. , Volume 53 (2007), pp. 1832-1839

[12] Dong, X.; Z. B. Bai Positive solutions of fourth-order boundary value problem with variable parameters, J. Nonlinear Sci. Appl. , Volume 1 (2008), pp. 21-30

[13] Bohner, M.; Peterson, A. An Introduction with Applications, Dynamic Equations on Time Scales, Birkhäuser, Boston, 2001

[14] S. Hilger Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. , Volume 4 (1990), pp. 18-56

[15] M. A. Krasnosel'skii Positive Solutions of Operator Equations, Noordhoff, Gronignen, 1964

[16] Ma, R. Y.; H. Y. Wang On the existence of positive solutions of fourth-order ordinary differential equations, Applicable Analysis., Volume 59 (1995), pp. 225-231

[17] Sun, H. R.; Li, W. T. Multiple positive solutions for p-Laplacian m-point boundary value problems on time scales, Appl. Math. Comput. , Volume 182 (2006), pp. 478-491

[18] Sun, H. R.; Li, W. T. Existence theory for positive solutions to one-dimensional p-Laplacian boundary value problems on time scales, J. Differential Equations. , Volume 240 (2007), pp. 217-248

[19] Wang, J. Y. The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Amer. Math. Soc. , Volume 125 (1997), pp. 2275-2283

[20] Zhu, Y. Z.; Zhu, J. Several existence theorems of nonlinear m-point boundary value problem for p-Laplacian dynamic equations on time scales, J. Math. Anal. Appl. , Volume 344 (2008), pp. 616-626

Cité par Sources :