Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \begin{cases} -(|u'|^{p-2}u')' = \lambda f(x, u),\\ u(a) = u(b) = 0, \end{cases} $ |
AFROUZI, G. A. 1 ; HEIDARKHANI, S. 2 ; HOSSIENZADEH, H. 3 ; YAZDANI, A. 1
@article{JNSA_2010_3_1_a0, author = {AFROUZI, G. A. and HEIDARKHANI, S. and HOSSIENZADEH, H. and YAZDANI, A.}, title = {MINIMAX {INEQUALITY} {FOR} {A} {SPECIAL} {CLASS} {OF} {FUNCTIONALS} {AND} {ITS} {APPLICATION} {TO} {EXISTENCE} {OF} {THREE} {SOLUTIONS} {FOR} {A} {DIRICHLET} {PROBLEM} {IN} {ONE-DIMENSIONAL} {CASE}}, journal = {Journal of nonlinear sciences and its applications}, pages = {1-11}, publisher = {mathdoc}, volume = {3}, number = {1}, year = {2010}, doi = {10.22436/jnsa.003.01.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.01/} }
TY - JOUR AU - AFROUZI, G. A. AU - HEIDARKHANI, S. AU - HOSSIENZADEH, H. AU - YAZDANI, A. TI - MINIMAX INEQUALITY FOR A SPECIAL CLASS OF FUNCTIONALS AND ITS APPLICATION TO EXISTENCE OF THREE SOLUTIONS FOR A DIRICHLET PROBLEM IN ONE-DIMENSIONAL CASE JO - Journal of nonlinear sciences and its applications PY - 2010 SP - 1 EP - 11 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.01/ DO - 10.22436/jnsa.003.01.01 LA - en ID - JNSA_2010_3_1_a0 ER -
%0 Journal Article %A AFROUZI, G. A. %A HEIDARKHANI, S. %A HOSSIENZADEH, H. %A YAZDANI, A. %T MINIMAX INEQUALITY FOR A SPECIAL CLASS OF FUNCTIONALS AND ITS APPLICATION TO EXISTENCE OF THREE SOLUTIONS FOR A DIRICHLET PROBLEM IN ONE-DIMENSIONAL CASE %J Journal of nonlinear sciences and its applications %D 2010 %P 1-11 %V 3 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.01/ %R 10.22436/jnsa.003.01.01 %G en %F JNSA_2010_3_1_a0
AFROUZI, G. A.; HEIDARKHANI, S.; HOSSIENZADEH, H.; YAZDANI, A. MINIMAX INEQUALITY FOR A SPECIAL CLASS OF FUNCTIONALS AND ITS APPLICATION TO EXISTENCE OF THREE SOLUTIONS FOR A DIRICHLET PROBLEM IN ONE-DIMENSIONAL CASE. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 1, p. 1-11. doi : 10.22436/jnsa.003.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.01/
[1] Three symmetric positive solutions for a second-order boundary value problem, Appl. Math. Lett. , Volume 13 (2000), pp. 1-7
[2] Existence of three solutions for a two point boundary value problem, Appl. Math. Lett., Volume 13 (2000), pp. 53-57
[3] Exact multiplicity results for two classes of boundary value problem, Diff. Integral Equations, Volume 6 (1993), pp. 1507-1517
[4] On a three critical points theorem, Arch. Math. (Basel), Volume 75 (2000), pp. 220-226
Cité par Sources :