MINIMAX INEQUALITY FOR A SPECIAL CLASS OF FUNCTIONALS AND ITS APPLICATION TO EXISTENCE OF THREE SOLUTIONS FOR A DIRICHLET PROBLEM IN ONE-DIMENSIONAL CASE
Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 1, p. 1-11.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we establish an equivalent statement of minimax inequality for a special class of functionals. As an application, a result for the existence of three solutions to the Dirichlet problem
$ \begin{cases} -(|u'|^{p-2}u')' = \lambda f(x, u),\\ u(a) = u(b) = 0, \end{cases} $
where $f : [a; b] \times R\rightarrow R$ is a continuous function, $p > 1$ and $\lambda > 0$, is emphasized.
DOI : 10.22436/jnsa.003.01.01
Classification : 34A15, 5J20
Keywords: Minimax inequality, critical point, three solutions, multiplicity results, dirichlet problem.

AFROUZI, G. A. 1 ; HEIDARKHANI, S. 2 ; HOSSIENZADEH, H. 3 ; YAZDANI, A. 1

1 Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
2 Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
3 Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
@article{JNSA_2010_3_1_a0,
     author = {AFROUZI, G. A. and HEIDARKHANI, S. and HOSSIENZADEH, H. and YAZDANI, A.},
     title = {MINIMAX {INEQUALITY} {FOR} {A} {SPECIAL} {CLASS} {OF} {FUNCTIONALS} {AND} {ITS} {APPLICATION} {TO} {EXISTENCE} {OF} {THREE} {SOLUTIONS} {FOR} {A} {DIRICHLET} {PROBLEM} {IN} {ONE-DIMENSIONAL} {CASE}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1-11},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2010},
     doi = {10.22436/jnsa.003.01.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.01/}
}
TY  - JOUR
AU  - AFROUZI, G. A.
AU  - HEIDARKHANI, S.
AU  - HOSSIENZADEH, H.
AU  - YAZDANI, A.
TI  - MINIMAX INEQUALITY FOR A SPECIAL CLASS OF FUNCTIONALS AND ITS APPLICATION TO EXISTENCE OF THREE SOLUTIONS FOR A DIRICHLET PROBLEM IN ONE-DIMENSIONAL CASE
JO  - Journal of nonlinear sciences and its applications
PY  - 2010
SP  - 1
EP  - 11
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.01/
DO  - 10.22436/jnsa.003.01.01
LA  - en
ID  - JNSA_2010_3_1_a0
ER  - 
%0 Journal Article
%A AFROUZI, G. A.
%A HEIDARKHANI, S.
%A HOSSIENZADEH, H.
%A YAZDANI, A.
%T MINIMAX INEQUALITY FOR A SPECIAL CLASS OF FUNCTIONALS AND ITS APPLICATION TO EXISTENCE OF THREE SOLUTIONS FOR A DIRICHLET PROBLEM IN ONE-DIMENSIONAL CASE
%J Journal of nonlinear sciences and its applications
%D 2010
%P 1-11
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.01/
%R 10.22436/jnsa.003.01.01
%G en
%F JNSA_2010_3_1_a0
AFROUZI, G. A.; HEIDARKHANI, S.; HOSSIENZADEH, H.; YAZDANI, A. MINIMAX INEQUALITY FOR A SPECIAL CLASS OF FUNCTIONALS AND ITS APPLICATION TO EXISTENCE OF THREE SOLUTIONS FOR A DIRICHLET PROBLEM IN ONE-DIMENSIONAL CASE. Journal of nonlinear sciences and its applications, Tome 3 (2010) no. 1, p. 1-11. doi : 10.22436/jnsa.003.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.003.01.01/

[1] Avery, R. I.; Henderson, J. Three symmetric positive solutions for a second-order boundary value problem, Appl. Math. Lett. , Volume 13 (2000), pp. 1-7

[2] Bonanno, G. Existence of three solutions for a two point boundary value problem, Appl. Math. Lett., Volume 13 (2000), pp. 53-57

[3] Korman, P.; Ouyang, T. Exact multiplicity results for two classes of boundary value problem, Diff. Integral Equations, Volume 6 (1993), pp. 1507-1517

[4] Ricceri, B. On a three critical points theorem, Arch. Math. (Basel), Volume 75 (2000), pp. 220-226

Cité par Sources :